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ABSTRACT
A finite element formulation is proposed that is capable of rigorously capturing a discontinuity in a fluid–
saturated medium. It is based on the partition-of-unity property of finite element shape functions. A Heaviside
distribution function is added to the displacement field and to the pressure field. The physical interpretation is
discussed.

1 INTRODUCTION
Failure in elasto-plastic materials involves three distinct phases. First, a relatively large area in the
body plastifies. Near the peak load, further plastic straining localises in an area of limited size. In
this zone, shear strains accumulate, while in the remainder of the body elastic unloading takes place.
In the third phase, progressive sliding takes place along a relatively thin zone.

To arrive at mesh–objective numerical simulations, enriched or viscous plasticity models are
required for the second phase of the simulation process [1]. In case of a fluid–saturated medium, the
fluid may also have a regularising effect, especially for mode–I behaviour [2].

The second phase, where the failure process is described by a regularised or viscous continuum
model, should be followed by a truly discontinuous description to accommodate for gross sliding.
A finite element methodology that is capable of handling this requirement can be constructed by
exploiting the partition-of-unity property of finite element shape functions [3]. This concept enables
the standard polynomial basis functions to be locally enriched by functions that make the element
suitable for carrying out a specific task. In Belytschko et al. [4,5] and Wells et al. [6–8] Heaviside
distribution functions have been chosen in order to capture a discontinuity in a displacement field.

In this contribution the concept is broadened to fluid-saturated materials. First, the governing
equations are recalled for a standard biphasic material model without discontinuities. Next, the
kinematic assumptions are stated as well as the assumptions regarding the constitutive behaviour in
the bulk material and in the interface. A formulation is chosen for the fluid that is compatible with the
assumptions for the skeleton and the physical interpretation of the consequences of this assumption
is discussed. An important feature is that the constitutive behaviour of the solid grains inside the
band can be different from that outside the band, while the same holds for the permeability. The
ensuing equations are cast into a weak format using a Bubnov–Galerkin approach and exploiting the
partition-of-unity property of the standard finite element shape functions to accommodate for the
discontinuity.
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Figure 1: Body composed of continuous displacement and pressure fields u and p at each side of the
discontinuity Γd

2 STANDARD BIPHASIC MEDIUM
As point of departure we assume a standard biphasic medium subjected the restriction of small dis-
placement gradients. In the same spirit, the variations of the concentrations are assumed to be small.
Furthermore, the assumption is made that the grains are incompressible. With these assumptions
and neglecting inertia forces, the balances of momentum and mass read, respectively:

∇ · σσσ = 0 (1)

with σσσ the stress tensor of the total medium, and

∇ · u̇ + ∇ · (nfwf ) + Q−1ṗ = 0 (2)

with wf the fluid velocity relative to the velocity of the skeleton u̇, nf the fluid volumic fraction, p

the fluid pressure and

Q−1 =
1 − nf

Ks

+
nf

Kf

(3)

with Ks and Kf the bulk moduli of the skeleton and the fluid, respectively. The governing equations
(1) and (2) together with the boundary conditions

σσσ · nΓ = tp , u = up (4)

on complementary parts of the boundary ∂Ωt and ∂Ωu, with Γ = ∂Ω = ∂Ωt∪∂Ωu and ∂Ωt∩∂Ωu =
∅, and

nfwf = qp , p = pp (5)

on complementary parts of the boundary∂Ωq and ∂Ωp, with Γ = ∂Ω = ∂Ωq∪∂Ωp and ∂Ωq∩∂Ωp =
∅, nΓ being the outward unit normal on the external boundary, Figure 1, and tp the prescribed
external traction and the subscript p denoting prescribed quantities.

3 KINEMATICS AND CONSTITUTIVE ASSUMPTIONS
A displacement field u that contains a single discontinuity at ∂Ωd = Γd can be written as the sum
of two continuous displacement fieldsū and ũ separated by a Heaviside function HΓd

:

u(x, t) = ū(x, t) + HΓd
ũ(x, t) (6)

Using eqn (6) the strain field follows by straightforward differentiation:

εεε = ∇sū + HΓd
∇sũ + δΓd

(ũ⊗ nΓd
)s (7)
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where the superscript s denotes a symmetrised operator and δΓd
is the Dirac function placed at the

discontinuity Γd. For notational simplicity, the explicit dependence of the various quantities and
fields on x and t has been dropped.

We now consider the case that a diaphragm with a permeability kd is placed at the discontinuity
in the displacements. As a consequence, the fluid pressure can be discontinuous across Γd and,
similar to eqn (6), we have:

p(x, t) = p̄(x, t) + HΓd
p̃(x, t) (8)

It is noted that this assumption is different from that of Armero and Callari [9], who adopt a smooth
pressure field (and therefore p = p̄) and also different from that of Larsson and Larsson [10], who
assume that a regularised Dirac distribution is added to the continuous pressure field at the location
of the discontinuity in the displacement field. For the fluid flow, gradients of the pressure need to be
computed. Differentiating eqn (8), we obtain:

∇p = ∇p̄ + HΓd
∇p̃ + δΓd

p̃ nΓd
(9)

where, similar to eqn (7), the explicit dependence on x and t has been dropped for notational sim-
plicity.

The above kinematics have to be complemented by constitutive equations to be inserted in the
weak form of the balance equations for momentum and mass. The solid phase is assumed to be invis-
cid and ‘simple’ in the sense of Noll and moreover, assumed to obey an incremental-linear constitu-
tive relation. Thus, for the bulk material we have, following the assumption of an incremental-linear
solid, the following form of the constitutive equation:

dσσσs = D : dεεε (10)

with D denoting the tangential material tensor in the bulk material, and σσσs the stress tensor in the
skeleton of the bulk:

σσσs = σσσ + pI (11)

The d-symbol denotes an infinitesimally small variation of a quantity. Inserting the stress decom-
position (11) together with the decompositions (6) and (8) into the constitutive relation (10), one
obtains:

dσσσ = D : (∇sdū + HΓd
∇sdũ) − (dp̄ + HΓd

dp̃)I (12)

since the Dirac function vanishes away from the discontinuity. Assuming that the fluid flow in the
porous medium can be described sufficiently accurately by Darcy’s relation,

wf = −
kf

nf

∇p (13)

kf being the permeability of the bulk material, the behaviour of the bulk of the fluid-saturated
medium is completely captured.

In the spirit of eqn (10) a tangential interface relation is also postulated between the interface
tractions td and the relative displacements v = ũ |x∈Γd

:

dtd = T · dv (14)

Similarly, a discrete equivalent of Darcy’s relation for the fluid flow qd at the interface can be defined
as

nΓd
· qd = −kd(p

+ − p−) = −kd p̃ |x∈Γd
(15)
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where it is recalled that kd is the permeability of the diaphragm that is thought to coincide with
the displacement discontinuity Γd and p+ and p− are the pressures in the Ω+ and Ω− domains,
respectively. Evidently, for an impervious boundary, one has kd = 0, which, according to eqn (15),
implies that nΓd

· qd = 0. Conversely, ideal permeability requires that kd → ∞, so that the term
can only be bounded if p+ − p− = 0, which implies that no discontinuity can exist in the pressure
field and the formulation of Armero and Callari [9] is retrieved.

It is noted that another boundary condition for the fluid flow can be formulated at the internal
boundary Γd:

nΓd
· qd = qd |x∈Γd

(16)

Such a boundary condition would represent the existence of a drain (or a line source) with a capacity
qd per unit length.

4 WEAK FORMAT AND DISCRETISATION
In the spirit of a standard Bubnov–Galerkin approach, we assume test functions for the displacements
and the pressures as:

ηηη = η̄ηη + HΓd
η̃ηη (17)

and
ζ = ζ̄ + HΓd

ζ̃ (18)

Substitution into eqns (1)–(2) and integrating over the domain Ω leads to the corresponding weak
forms:

∫

Ω

(η̄ηη + HΓd
η̃ηη) · ∇ · σσσdΩ = 0 (19)

and
∫

Ω

(ζ̄ + HΓd
ζ̃)[∇ · u̇ + ∇ · (nfwf ) + Q−1ṗ] dΩ = 0 (20)

We next apply the divergence theorem, use the external boundary conditions (4) and (5), eliminate
the Heaviside functions by changing the integration domain from Ω to Ω+ and eliminate the Dirac
functions by transforming the volume integral into a surface integral:

∫

Ω

∇η̄ηη : σσσdΩ +

∫

Ω+

∇η̃ηη : σσσdΩ +

∫

Γd

η̃ηη · tddΩ =

∫

Γ

(η̄ηη + HΓd
η̃ηη) · tp dΩ (21)

and

−

∫

Ω

ζ̄∇ · u̇ dΩ −

∫

Ω+

ζ̃∇ · u̇ dΩ +

∫

Ω

∇ζ̄ · (nfwf ) dΩ +

∫

Ω+

∇ζ̃ · (nfwf ) dΩ

+

∫

Γd

ζ̃nΓd
· qd dΓ −

∫

Ω

ζ̄Q−1ṗ dΩ −

∫

Ω+

ζ̃Q−1ṗ dΩ =

∫

Γ

(ζ̄ + HΓd
ζ̃)nΓ · qp dΓ

(22)

where td = σσσ · nΓd
is the traction at the discontinuity.

In a Bubnov–Galerkin sense the trial functions u and p and the test functions ηηη and ζ are discre-
tised in the same space:

u = N(ā + HΓd
ã) , p = H(p̄ + HΓd

p̃) (23)

ηηη = N(w̄ + HΓd
w̃) , ζ = H(z̄ + HΓd

z̃) (24)

where the partition-of-unity property of the shape functions contained in N and H has been ex-
ploited. The arrays ā and p̄ contain the nodal values of the underlying continuous fields ū and p̄,
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while the arrays ã and p̃ contain the nodal values of the underlying continuous fields ũ and p̃. The
arrays w̄, z̄, w̃ and z̃ contain the discrete values related to the respective test functions. Inserting
eqns (24) into eqns (22) and (21) and requiring that the result holds for all admissible w̄, z̄, w̃ and z̃

gives, using the standard notation B = LN:
∫

Ω

BTσσσdΩ =

∫

Γ

NTtpdΓ (25)

∫

Ω+

BTσσσdΩ +

∫

Γd

NTtddΓ =

∫

Γ

HdN
TtpdΓ (26)

−

∫

Ω

HTmTu̇dΩ +

∫

Ω

∇HTnfwfdΩ −

∫

Ω

HTQ−1ṗ dΩ =

∫

Γ

HTnT
Γd

qpdΓ (27)

−

∫

Ω+

HTmTu̇dΩ +

∫

Ω+

∇HTnfwfdΩ −

∫

Ω+

HTQ−1ṗ dΩ +

∫

Γd

HTnT
Γd

qddΓ

=

∫

Γ

HdH
TnT

Γd
qpdΓ

(28)

with mT = (1, 1, 1, 0, 0, 0).
For using the Newton-Raphson method to solve eqns (25)–(28) they have to be linearised. To

this end, the stress and the pressure are decomposed as follows

σσσj = σσσj−1 + dσσσ , pj = pj−1 + dp (29)

with the subscripts j − 1 and j signifying the iteration numbers. Substituting these decompositions
into the discrete set of equations (25)–(28), utilising the kinematic relation (7), the stress–strain
relation (12) for the bulk material and the traction–relative displacement relation (14) at the interface,
using Darcy’s relation for the fluid flow in the porous medium (13), its discrete equivalent (15)
at the interface and the expression (9) for the pressure gradient and using the interpolations for
the displacement and the pressure according to eqns (23), leads to the following set of equations
linearised at iteration j − 1:











0 0 0 0

0 0 0 0

KT
āp̄ KT

āp̃ K
(1)
p̄p̄ K

(1)
p̄p̃

KT
āp̃ KT

āp̃ K
(1)
p̄p̃ K

(1)
p̄p̃



















˙̄a
˙̃a
˙̄p
˙̃p









+











Kāā Kāã Kāp̄ Kāp̃

Kāã Kãã Kāp̃ Kāp̃

0 0 K
(2)
p̄p̄ K

(2)
p̄p̃

0 0 K
(2)
p̄p̃ K

(2)
p̃p̃



















dāj

dãj

dp̄j

dp̃j









=









fext
ā − f int

ā,j−1

fext
ã − f int

ã,j−1

fext
p̄ − f int

p̄,j−1

fext
p̃ − f int

p̃,j−1









(30)

with fext
ā ..........fext

p̃ given by the right-hand sides of eqns (25)–(28), respectively, with f int
ā ..........f int

p̃

given by the left-hand sides of eqns (25)–(28), and with the stiffness matrices defined as:

Kāā =

∫

Ω

BTDBdΩ , Kāã =

∫

Ω+

BTDBdΩ (31)

Kãã =

∫

Ω+

BTDBdΩ +

∫

Γd

NTTNdΓ (32)
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Kāp̄ = −

∫

Ω

BTmHdΩ , Kāp̃ = −

∫

Ω+

BTmHdΩ (33)

K
(1)
p̄p̄ = −

∫

Ω

HTQ−1HdΩ , K
(1)
p̄p̃ = −

∫

Ω+

HTQ−1HdΩ (34)

K
(2)
p̄p̄ = −

∫

Ω

∇HTkf∇HdΩ , K
(2)
p̄p̃ = −

∫

Ω+

∇HTkf∇HdΩ (35)

K
(2)
p̃p̃ = −

∫

Ω+

∇HTkf∇HdΩ −

∫

Γd

HTkdHdΓ (36)

For the time integration of eq. (30), the reader is referred to de Borst et al. [11].

5 CONCLUDING REMARKS
The partition-of-unity property of finite element shape functions has been exploited to describe dis-
continuities in fluid–saturated media (cracks, shear bands). Attention has been paid to the modelling
of the fluid behaviour at the interface. The ensuing equations have been elaborated in a finite element
context.

REFERENCES

1. de Borst R. Some recent issues in computational failure mechanics, Int. J. Num. Meth. Eng.
52, 63–95, 2001.

2. Schrefler BA, Sanavia L, Majorana CE. A multiphase medium model for localisation and
postlocalisation simulation in geomaterials, Mech. Cohes.-frict. Mater. 1, 95–114, 1996.

3. Babuska I, Melenk JM. The partition of unity method, Int. J. Num. Meth. Eng. 40, 727-758,
1997.

4. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing, Int. J.
Num. Meth. Eng. 45, 601–620, 1999.
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