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ABSTRACT

This work comprises an asymptotic analysis of a perturbation problem for dynamic equations

of two-dimensional elasticity modelling a crack propagating in an infinite strip. The sides of

the elastic strip are subjected to Dirichlet boundary conditions (displacement conditions),

and the crack faces are assumed to be traction-free. The unperturbed crack motion is con-

sidered as a steady, constant speed propagation along the symmetry line of the strip. Small

time-dependent perturbations of the crack path include those corresponding to longitudinal

variation in speed as well as deflection in the transverse direction. Asymptotic formulae for

the stress intensity factors are given in terms of the “crack-path-perturbation function”, the

second-order asymptotics of the weight functions and the applied load. The crack stability

is analysed with respect to small perturbations of the crack path.

1 INTRODUCTION

The present work was preceded by a series of theoretical and experimental publications
on fracture within thin brittle domains. These papers include the experimental and
numerical work by Yang and Ravi-Chandar [1] who studied path instability for a
quasi-static crack propagating in a heated strip of glass. Earlier Marder [2] analysed
the elastic fields near the tip of a straight crack advancing in a thermally loaded
strip and studied the variation of the Mode-I stress intensity factor KI relative to
the position of the cold front. Sasa et al. [3], Adda-Bedia and Ben Amar [4], Adda-
Bedia and Pomeau [5] performed asymptotic analysis of quasi-static problems for
two-dimensional wavy cracks and addressed the problem of crack instabilities in a
heated glass strip. Liu and Marder [6] considered a model Wiener-Hopf problem
associated with steady propagation of a semi-infinite crack in an elastic strip under
fixed-grip loading; they have also developed an approach to the case of an accelerating
crack. Crack tip instabilities in a lattice model were studied by Marder and Gross
[7]. The monograph by Freund [8] presents asymptotics of elastic fields for a crack
propagating in an infinite strip.
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Willis and Movchan [9], [10] constructed the dynamic weight functions for a three-
dimensional crack propagating in an infinite space and presented the asymptotic for-
mulae for the stress-intensity factors for a crack with a wavy front. A two-dimensional
singular perturbation problem for a moving crack was considered by Obrezanova et

al. [11], who performed the crack path stability analysis for different types of external
load.

Here we develop an asymptotic model for a crack propagating dynamically in an
infinite strip under fixed-grip loading. It is assumed that the crack faces are traction-
free. The unperturbed motion is considered as a steady, constant speed propagation
along the line of symmetry of the strip. Small time-dependent perturbations of the
crack path include those corresponding to longitudinal variation in speed as well as
deflection in the transverse direction. We derive asymptotic formulae for the stress
intensity factors in terms of the “crack-path-perturbation function”, the second-order
asymptotics of the weight functions and the applied load. We then analyse the crack
stability with respect to small perturbations of the crack path.

2 FORMULATION OF THE PROBLEM

The problem considered is that of a semi-infinite crack propagating dynamically in
an elastic strip {(x, y) : −∞ < x < ∞, − h < y < h} of width 2h. The material of
the strip is isotropic and linearly elastic, with Lamé elastic moduli λ, µ and density
ρ. The displacement field u satisfies the equation of motion

µ∇2
u + (λ+ µ)∇(∇ · u) = ρü in the strip with the crack, (1)

and it obeys the traction boundary conditions

σ(u) n = 0 on the crack surfaces, (2)

and the displacement boundary conditions

u = ± w e
(2) on the sides of the strip y = ±h. (3)

Here σ denotes the stress tensor, n is an outward unit normal, and w is a given
constant.

The unperturbed configuration corresponds to a straight semi-infinite crack mov-
ing with a constant speed V along a path M0 = {(x, y) : −∞ < x < V t, y = 0}, where
t denotes time. For this limit configuration, the displacement field u = u

(0)(x−V t, y)
satisfies the problem (1)-(3) within the strip containing the crack M0. The corre-
sponding stress field is singular at the crack tip. Ahead of the crack, for x > V t, the
following asymptotic formula holds

σ
(0)
22 ∼ K

(0)
I

√

2π(x− V t)
+A(0)

√
x− V t as x→ V t, (4)

where K
(0)
I denotes the Mode-I stress intensity factor, and A(0) is the coefficient which

depends on the type of the applied load and the geometry of the elastic domain. As
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shown in [12], the coefficient K
(0)
I has the form

K
(0)
I = (2µ+ λ)w

√
2√
αh

b2

a

√

R(V )

V
, (5)

and A(0) has the same sign as K
(0)
I . In (5), a and b denote the speeds of dilatational

and shear waves,
a2 = (2µ+ λ)/ρ, b2 = µ/ρ,

and
R(V ) = 4αβ − (1 + β2)2, α =

√

1 − V 2/a2, β =
√

1 − V 2/b2.

We note that the static limit (see Rice [13]) is recovered from (5) as V → 0.
We then consider a small time-dependent perturbation of the crack path intro-

duced as follows

Mε = {(x, y) : −∞ < x < V t+ εϕ(t), y = εψ(x)}, (6)

where ε is a small positive non-dimensional parameter, and ϕ and ψ are smooth
functions characterising in-plane and out-of-plane perturbations, respectively.

The objective is to derive the asymptotic representations for the stress intensity
factors for both in-plane and out-of-plane perturbations.

The reasoning of Willis and Movchan [9], and Willis and Movchan [10] applies to
this first-order perturbation analysis. It requires the dynamic weight functions for
the crack in a strip; these are constructed in [12].

3 ASYMPTOTIC FORMULAE FOR THE STRESS INTENSITY FACTORS

We first consider a longitudinal perturbation of the crack path. In this case the
perturbation of KI is given by

KI ∼ K
(0)
I + εK

(1)
I , (7)

and the stress intensity factor KII remains zero. In the above formula (see Willis and
Movchan [9])

K
(1)
I = K

(0)
I (Q2(t) ∗ ϕ(t)) +

√

π

2
A(0)ϕ, (8)

where the function ϕ describes the longitudinal perturbation of the crack path along
the x-axis (see (6)). The function Q2 characterises the first-order perturbation of the
dynamic weight function [U2] for the crack in a strip; its representation is given in
[12].

For a transverse perturbation of the crack path (defined by the function y = εψ(x)
in (6)), the first-order perturbation in KII has the form

KII ∼ εK
(1)
II , (9)
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where K
(1)
II is given by (see Willis and Movchan [10])

K
(1)
II =

√

π

2
ψ(V t)ΘA(0) + ψ′(V t)ΥK

(0)
I + ΘK

(0)
I (Q1(t) ∗ ψ(V t))

+

{

[U1] ∗ 〈P (1)
1 〉 − 〈U2〉 ∗ [P

(1)
2 ]

}
∣

∣

∣

∣

X=0

. (10)

Here

Θ =
4αβ − (1 + 2α2 − β2)(1 + β2)

R(V )
+
V 2

b2
(1 + β2 − 2αβ)

R(V )
, (11)

Υ =
(1 + β2)(β − α)(α+ 2β)

R(V )
+ 2, X = x− V t. (12)

The representations for the function Q1 (describing the first-order perturbation of the
dynamic weight function [U1] for the crack in a strip), the dynamic weight functions

[U1], 〈U2〉 and the effective tractions [P
(1)
1 ], 〈P (1)

2 〉 are given in [12]. The perturbation
of the Mode-I stress intensity factor KI is of order O(ε2).

4 STABILITY RESULTS

To analyse the longitudinal stability, we adopt the formula associated with the energy
balance relation

K
(1)
I

K
(0)
I

= ϕ̇(t)
F ′(V )

2F(V )
, (13)

similar to Obrezanova et al [11]. In the above,

F(V ) =
a2b2R(V )

2α(a2 − b2)V 2
.

Equation (13) is solved numerically for ϕ(t) = e−iηV t.
For the transverse stability analysis, we use the condition of “local symmetry”

K
(1)
II = 0 and take the function ψ characterising the transverse perturbation of the

crack path in the form ψ = e−iη(X+V t).
Numerical calculations show that, below a certain speed (approximately 0.6 of

the Rayleigh wave speed), the crack is unstable to both in-plane and out-of-plane
perturbations. At a lower speed, the crack is likely to accelerate, initially without
much deviation from straight. At a higher speed, the transverse instability becomes
dominant. We would like to emphasise that these results were obtained on the basis of
the Griffith energy balance and the assumption of “local symmetry”. It is recognised
that other physical effects, such as repeated attempts at microbranching as the crack
accelerates, may be important as outlined by Sharon and Fineberg in [14], [15]. An
analytical model taking into account such effects would require a separate study,
perhaps including the present first-order perturbation theory as a component part.
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