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ABSTRACT 

In this paper, a fast running crack in an elastic matrix with an inclusion is studied by using the time domain 
boundary element method (BEM). The bi-material system is divided into two parts along the interface between 
the inclusion and the matrix. Each part is linear, elastic, homogeneous and isotropic. For the crack surfaces, the 
non-hypersingular traction boundary integral equations are applied; while for the interface and external 
boundaries, traditional displacement boundary integral equations are used. In the numerical solution procedure, 
square root shape functions are adopted as to describe the proper asymptotic behavior in the vicinity of the 
crack-tips. The integrations over time are analytically computed via linear or constant temporal interpolation 
functions. The crack growth is modeled by adding new elements of constant length to the moving crack tip, 
which is controlled by the fracture criterion based on the maximum circumferential stress. The fracture criterion 
is evaluated to determine the direction and the speed of the crack advance in each time step. As an example, a 
rectangular plate with a pre-existing edged crack and a circular inclusion under the action of wedged impact 
loading is computed in details. The numerical results of the crack growth path, running speed, dynamic stress 
intensity factors (DSIFs) and dynamic interface tractions are presented for various material combinations and 
geometries. The effects of the inclusion on the fast crack propagation are discussed. 

 
1 INTRODUCTION 

In the process of the manufacture, some different phases, such as voids, flaws or inclusions, will 
be inevitably occurred in the materials. As well, in order to reinforce a material, a particle- 
reinforced technique has been applied to industrial practice. It is now well known that the 
pre-existing flaws/inclusions will do a significant effect on the fracture properties in these 
materials. To better understand the fracture mechanism, the interaction between the pre-existing 
cracks and inclusions should deserve investigation. Indeed the problem of crack interaction with 
an elastic inclusion has been an attractive subject of many previous investigations, and the cases of 
a crack inside, outside, penetrating or lying on the interface were analyzed [1-5]. However, most of 
the previous publications were focused on the quasi-static crack growth. In this paper, a fast 
running crack in an elastic matrix with an inclusion is studied by using the time domain boundary 
element method (BEM). The dynamic interaction between the inclusion and the crack is examined. 
 

2 PROBLEM FORMULATION 
Consider a crack propagating to an inclusion embedded in a matrix with arbitrary configurations in 
plane strain state, see Fig.1. All component materials are assumed isotropic and linearly elastic. The 
matrix is surrounded by the external boundary um Γ+Γ=Γ σ , the interface sΓ , the upper and lower 
crack faces ±ΓC . The inclusion is encircled by its boundary iΓ  which is the same as sΓ . σΓ  is the 
part of external boundary with tractions αt̂  being given, and uΓ  the remaining external boundary 
with the displacements αû  being prescribed. The unit normal vectors of all boundaries are shown in 
Fig.1. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nomenclature of some material parameters are shown as follows: Shear modulus jµ , Lamé 
constant jλ , Poisson’s ratio jν  and mass density jρ  for the matrix (j=1) and inclusion (j=2), 

respectively. The shear and longitudinal wave velocities are given by jj
j

TC ρµ /=  and 

jjj
j

LC ρµλ /)2( += , respectively. 

Assume a general load ),(ˆ tt c xα  is applied on the crack faces. Then we have 

),,(ˆ),(),( ttnttt c xxx αβαβα σ ==         )(tC
±Γ∈x .                   (1) 

If the inclusion and the matrix are perfectly bonded, the interface conditions become 

),(),( 21 tttt xx αα −= , ),(),( 21 tutu xx αα = ,   SΓ∈x                    (2) 

which states that forces and displacements are continuous across the interface. At the external 

boundary, we have 

),,(ˆ),( tttt xx αα =    σΓ∈x ,                            (3) 

),,(ˆ),( tutu xx αα =   uΓ∈x .                            (4) 

In addition, zero initial conditions are assumed, i.e. 

0),(),( == tutu jj xx αα & ,   for 0≤t .                        (5) 

In above equations, j
αβσ  and juα  denote the stress and displacement components. The 

conventional summation rule over double indices is applied with Greek indices 2,1,,, =δγβα  for 
the present 2D problem. 
 

3 BOUNDARY ELEMENT FORMULATIONS AND NUMERICAL PROCEDURE 
As in Ref. [6], we apply two systems of BIEs for different boundaries. At the external boundaries 
including the interfaces, the traditional time-domain displacement BIEs derived from Betti- 

Fig.1 A fast running in an elastic matrix with an elastic inclusion 
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Rayleigh reciprocal theorem are used, while at the crack faces, the non-hypersingular time-domain 
traction BIEs developed by Zhang et al [7] are employed. Here, we directly list them as follows: 
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where αβγδC  is the elasticity matrix; the quantities with the superscript G are 2-D elastodynamic 
Green’s functions for stresses or displacements [8]; ),( tu yβ∆  is the crack opening displacements 

(CODs) defined as ),(),( ττ ββ
+Γ∈=∆ Cuu yy ),( τβ

−Γ∈− Cu y ; and )(xαβc  is a constant matrix 
which depends on the position of the collocation point x  and reduces to 2/αβδ  for a smooth 
boundary (where αβδ  is Kronecker delta). All integrals are in the sense of Cauchy principal 
value. The tensor εδe  is the 2-D permutation tensor [8]. 

In the current application, the system of equations (6)-(8) has been converted into a ‘discrete’ 
form by using discretization in both time and space with proper interpolation functions. The time 
interval of interest ],0[ t  is equally divided into m time steps of span t∆ . Space-constant 
boundary elements are employed to divide all of the external boundaries (including the interface) 
of matrix and inclusion. Straight boundary elements of constant length Cy∆  are chosen to 
discretize the crack face. The unknown CODs, displacements and tractions along the boundaries 
are approximated by using the interpolation functions in both time and space with the same shapes 
as those adopted in [6,8]. It is particularly mentioned that special “crack-tip elements” are applied 
behind crack-tips while constant elements are used away from crack-tips [6,8]. Then the system of 
equations (6)-(8) in conjunction with the boundary conditions (1)-(4) can be rewritten into a set of 
algebraic equations for the unknown coefficients, which can be solved using a Gaussian 
elimination scheme. The crack propagation is simulated by adding a new element on the growing 
crack tip at an adaptable time which is determined by a dynamic fracture criterion. The fracture 
criterion used here is similar to the maximum circumferential stress criterion developed by 
Erdogan and Sih [9], which states that crack advance will take place in the direction 0θ  of the 
maximum circumferential stress θθσ  when this stress reaches the same critical value as in pure 



mode I fracture. But here θθσ  and dynamic fracture toughness DK I  are the functions of the 
crack-tip speed. 
 

4 NUMERICAL RESULTS AND DISCUSSION 
As a simple example, we consider the dynamic interaction between a propagating edged crack 

and a circular inclusion embedded in a square plate under the concentrated impact load )(0 tHF , 
see Fig.2. The geometry parameters of the system are listed: side length of the square plate 
2W=40mm, inclusion radius r=4mm and initial crack length 0a =15mm. Some material constants 
are fixed as 1ν = 2ν =0.3 and 21 ρρ = 3mkg5000 −⋅= . Without special explanations, crack offset 
d=4mm; the fracture toughness of the plate ICK =49.5× 2/16 mPa10 ⋅ ; and the dynamic fracture 
toughness IDK  as a function of the crack tip velocity v is computed by an empirical formula [8] 

[ ]101421
ICID )/(109.3)/(5.20.1 TT CvCvKK ××+×+×= .                    (9) 

In calculation, the crack is divided into 24 elements. The concentrated load is distributed over the 
first element in the left.  

The effect of the shear modulus ratio 2112 / µµµ =  on the crack trajectory is shown in Fig.3. It 
is seen that the crack deflects near to the softer inclusion ( 12µ =2.0) and away from the stiffer one 
( 12µ =0.5). The crack advances along a straight path for 12µ =1.0 since the system becomes a 
homogeneous plate in this case.  

Fig.4a and 4b present the history of the first ( IK ) and second ( IIK ) dynamic stress intensity 
factors (DSIFs) for some selected values of 12µ , where the DSIFs are non-dimensionalized by 

0K = 2/1
0 )( −aπσ  with CyF ∆= /00σ . We find the values of IIK  oscillate near zero and those of 

IK  oscillate and ascend to a high level. This implies that the propagating crack is in mode I. It 
is noted that the value of IK  is negative in some time period. This means that the crack closure 
takes place. This behavior, we believe, is due to the far distance of the crack tip from the load. The 
interaction between the crack faces should be considered in more precise analysis. But here we 
neglect this effect.  

The crack arc length and crack tip speed are plotted in Fig.5a and 5b for different values of 12µ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 A propagating edged crack and 
a circular inclusion in a square plate 
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Fig.3 Effects of the shear modulus ratio 
on crack trajectory 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The crack initiation time has a slight difference and the earlier crack initiation appears for the stiffer 
inclusion. It is noted that arrest appears temporarily for a very short time period during the crack 
propagation for 12µ =2.0 and 1.0. This sounds very strange. 

Next we consider the effect of the dynamic fracture toughness on the crack propagation, see 
Fig.6a where we choose 5.012 =µ . Three cases are considered: (i) ICK =49.5× 2/16 mPa10 ⋅ ; (ii) 

ICK =7.60× 2/16 mPa10 ⋅ ; and (iii) IDK = ICK =49.5× 2/16 mPa10 ⋅  (i.e. IDK  is independent of 
the crack speed). It can be found that the crack deflects farther for case (iii) than for cases (i) and 
(ii). The effect of the inclusion location ( rd / ) on the crack trajectory is demonstrated in Fig.6b 
for 12µ =0.5. The kink angle of the crack is larger for the smaller value of rd / .  
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Fig.5 Effects of the shear modulus ratio on crack length (a) and speed (b) 
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Fig.6 Effects of the fracture toughness (a) and inclusion position (b) 
on crack trajectory 
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