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ABSTRACT 

The problem of growth of a hydraulic fracture located at the interface between two impermeable linearly 
elastic solids is considered. An incompressible Newtonian fluid is supplied at a constant injection rate into 
the crack to promote crack propagation. The energy release rate criterion is adopted to control crack growth. 
A hybrid scheme of Displacement Discontinuity Method and Finite Difference Method is employed to solve 
the nonlocal and nonlinear coupled problem. Numerical results are obtained to examine the effects of the 
contrast of Young’s modulus, the fluid viscosity and the confining stress, on the fracture growth rates, the 
stress and opening profiles. The possibility of the fluid front not reaching the crack tip can result in a fluid lag 
zone, which is taken into account in the numerical method.  
 

1. INTRODUCTION 
The hydraulic fracturing technique has been widely used for oil and gas stimulation, geothermal 
reservoir stimulation, and drilling waste disposal. In layered sedimentary rocks, the fractures have 
been observed to deviate into a relatively weak bedding plane and to cause local opening along the 
contact plane (Cooke and Underwood[1]). Layered rock systems, such as coal and sandstone, can 
exhibit a strong contrast in stress and Young’s modulus across the layer interfaces. There is a need 
to better understand the fracture behavior of fluid-driven interfacial crack for hydraulic fracture 
growth along such interfaces for application to fracture predication and design. 

Interfacial crack problems have received considerable attention in the past decade. However, 
there are no existing solutions for the fluid-driven cracks along an interface although the early 
work by Williams [2] is geology-related. He found that for cracks along on an interface between 
two elastic materials, there are predicted nonphysical stress oscillation and material 
interpenetration very close to the crack tip. However, the more widely used approach in 
engineering applications follows the concept of small-scale contact presented by Rice [3] which 
ignore this aspect of the solution.  

Fractures can propagate without the fluid completely filling the fracture. In this case, there is a 
fluid lag zone between the fluid front and the crack tip. The existence of the lag zone affects the 
crack opening and fluid pressure and, therefore, the crack growth rates. The lag zone size may 
vary with time and is sensitive to the far-field stress states. It is of interest to study the role of 
elastic modulus and far-field stress contrasts on the lag zone size for an interfacial crack. 

We use numerical experiments to investigate the mechanism of fluid-driven crack propagation 
along an interface between two elastic solids. The crack problem is formulated in Section 2. An 
incompressible Newtonian fluid is injected at a constant injection rate into the crack to promote 
crack propagation. The energy release rate is adopted for the crack growth criterion. A hybrid 
scheme of Displacement Discontinuity Method and Finite Difference Method described in Section 
3 is employed to solve the nonlocal and nonlinear coupled problem.. Numerical results are given 
in Section 4 to examine the effects of the contrast of Young’s modulus, fluid viscosity and the 
confining stress, on the fracture growth rates, pressure and opening profiles.  
 

2. PROBLEM FORMULATION 
Consider quasi-static crack advance along an interface between two elastic solids, as shown in 



Fig.1. The half crack length at time t is a(t) and the fluid-filled length is b(t). Young’s modulus, 
shear modulus and Poisson’s ratio above and below the interface are denoted by 111  , , νµE  and 

222  ,, νµE , respectively. In the absence of body force, the equilibrium equation for interfacial 
cracks is  
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in which Dundur’s mismatch parameters are defined as 
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where ii νκ 43−= ; and C is the effective bi-material modulus  
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The discontinuities in the normal and tangential directions are denoted by ω  and δ , 
respectively. And p(x) is the internal fluid pressure and oσ  is the confining stress across the 
interface. 
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Fig. 1 The fluid-driven interfacial crack problem 

 
 

With regard to fluid filled region [-b, b], the fluid is assumed to be an incompressible, 
Newtonian fluid. The lubrication equation is valid in this case. Thus, we have 
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in which η  is the fluid dynamic viscosity. 



The injection condition is taken as the constant injection rate, 0Q , that is, 
2/),0( 0Qtq =         (5) 

Which accounts for the fact that the total flow is divided between the two symmetric sides of the 
crack.  The global mass balance requires  
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The vanishing opening and shearing at the crack tip implies  
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Ahead of the tip of the interfacial crack, there is a singular stress field which can be expressed 
as  

ε

π
σσ i

r a
r

r

iKK
i )(

2
lim 21

01222
+

=+
→

      (8) 

in which xar −= , )]1/()1ln[(2/1 ββπε +−=  and iK  is the complex stress intensity factor. 
Instead of calculating iK , a maximum Energy Release Rate, Γ , criterion is used for crack 
propagation, see Geubelle and Knauss [4]. Their expressed for Γ  in terms of opening and sliding 
displacements is as follows 

 
rr

22

02211

2
lim

]/)1(/)1[(8
)41( δω

µνµν
επ +
−+−

+
=Γ

→
    (9) 

 
3. NUMERICAL METHOD 

An adaptive-mesh scheme is employed for solving the boundary-value problems in the previous 
section. Two sizes of constant displacement discontinuity elements are used, based on the element 
location. The element size of coarse elements is three times of the fine elements. The first six 
elements adjacent to the crack tip are always of fine element size, while others are coarse 
elements. The tip element has a square-root singularity in displacement discontinuities. With crack 
propagation, one normal element size is added to the crack. The newly-created crack surface is 
discretized by the fine elements. To limit the overall number of fine elements, the three fine 
elements furthest from the tip must be changed to one coarse element. 

The hypersingular elasticity equation, Eq. (1), is solved by the ordinary Displacement 
Discontinuity Method (DDM) with unknown internal fluid pressure. The fluid flow in the 
hydraulic fractures is solved through Finite Difference Method (FDM) with a discretization in 
time. An implicit scheme is used to seek a convergent solution after a small time increment t∆ . 
The solution method accounts for the fact that the crack can be only partially filled with fluid. The 
lubrication equation for fluid flow in element i can be rewritten as  
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in which r+1 is the iteration step and t and  , , ξΠΩ  are normalized opening, fluid pressure, 
coordinate and time, (see Zhang et al.[5]). The expressions for two coefficients are  
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The crack opening can be obtained by checking the relative error after each iteration step to 
insure that a convergence tolerance is met. After the convergent opening is obtained, the location 
of the fluid front can be calculated by the mass balance in the filling elements. Through algebraic 
manipulations (see Zhang et al. [5]), the ratio φ  of fluid–filled length in the filling element to the 
element size is found to be 
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in which the flux into the filling element M is  
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4. NUMERICAL RESULTS 

In this section, the following material constants are specified: =1E 10000 MPa, 25.021 ==νν  

and =Γ 100 N/m. An injection rate, s/m 0001.0 2
0 =Q , is used for all cases. To evaluate the 

effects of Young’s modulus contrast, the variations of crack length and lag size in time are 
displayed in Fig. 2 for various modulus contrasts using 1.0=η Pa.s and 20 =σ MPa. The crack 
speed decreases in time, as does the lag size. It is found that with decreasing the Young’s modulus 
in material 2, the crack growth rate decreases. The lag size is also reduced by increasing the 
contrast 21 / EE . At larger contrasts, there is no lag zone  
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Figure 2: Time dependence of crack length and length ratio for various values of 21 / EE . 

 
 

Figure 3 show the variations of crack length and lag size in time for different values of fluid 
viscosity at =2E 50000 MPa and =0σ 2 MPa. It is seen from Fig. 3 that if the injection rate is 
fixed, the crack growth rate decreases with increasing viscosity. On the other hand, there is a large 
lag zone at large viscosities and no lag can be detected if =η 0.001 Pa.s. 

The effect of the confining stresses on crack growth rate and lag size is depicted in Fig. 4 at 
=2E 50000 MPa and 1.0=η Pa.s. It is found that with increasing confining stress, the crack 

growth rate is reduced and the lag size decreases. For the case of vanishing confining stresses, the 
lag size is constant, while the lag size decreases in time at non-zero confining stresses.  
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Figure 3: Time dependence of crack length and length ratio for various values of η . 
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Figure 4: Time dependence of crack length and length ratio for various values of 0σ . 
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Figure5: Distribution of crack opening and fluid pressure along the crack for various values of 

21 / EE  at the specified half crack length m86.1)( =ta . 
 



The profiles of crack opening and fluid pressure at a specified crack length are plotted in Fig. 5 
for different contrasts for 1.0=η Pa.s and 20 =σ MPa. It is found that the opening depends on the 
average Young’s modulus 2/)( 21 EE + . A small fluid lag zone can be seen in Fig. 5 for the case 

of 2/ 21 =EE  as a region with zero fluid pressure. The fluid pressure gradient increases near the 
crack tip as the Young’s modulus of material 2 is increased, reflecting the overall decrease in the 
opening and the associated increase in viscous losses.  

 
5. CONCLUSIONS 

In this paper, fluid-driven crack propagation along an interface between two elastic solids is 
studied numerically. Numerical results are provided for the effects of the contrast of Young’s 
modulus, fluid viscosity and  confining stress, on the fracture growth rates, pressure and opening 
profiles. It is found that these factors affect the crack growth rate and the fluid lag size, as well as 
the distributions of opening and fluid pressure.  
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