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ABSTRACT 

Advances in high technologies using nanometer-size structures, such as thin films and carbon nanotubes, 
requires calculation of mechanical properties for the objects of the nanosize scale level. Majority of the 
theoretical mechanical models for nanoobjects is based on the macroscopic equations of theory of elasticity. 
This gives the questions about applicability of the quantities obtained from the macroscopic experiments to 
the nanoscale objects or about necessity of corrections taking into account the scale effects. The presented 
paper is devoted to 1) theoretical investigation of the influence of the scale effects on the Poisson’s ratio, 
Young modulus and the bending stiffness of a nanocrystal, which is extended in one direction and has a 
limited number of atomic layers in another direction, 2) theoretical investigation of the delamination 
processes of a preliminary stressed bi-layered plate from a rigid foundation, 3) creation of stable models for 
crystal lattices. 
 

1  INTRODUCTION 
In recent years, rapid development of nanotechnologies led to the necessity of constructing 
adequate physical models for describing physico-mechanical properties of objects with a 
nanometer-size (nanosize) scale. The majority of the existing models of such a kind assume that 
the basic mechanical characteristics of nanosize objects correspond to those obtained in 
macroscopic experiments. However, when dealing with structures containing only several atomic 
layers, the discrepancy arises between the evident discreteness of an object under study and a 
continual method of its description. The inconsistency of values of elastic moduli, which were 
obtained in microscale and macroscale experiments, was noted by many researchers. The solution 
to an equivalent continual problem allows the Poisson's ratio and Young modulus for the coating 
to be determined from such experiments. However, the values of elastic characteristics measured 
by this method exhibit a substantial inconsistency by their macroscopic values for the same 
material. The aim of the presented paper is 1) to investigate theoretically the scale effect for the 
Poisson's ratio, Young modulus and the bending stiffness of thin nanocrystalline structures, 2) to 
investigate the delamination processes of a preliminary stressed bi-layered plate from rigid 
foundation, 3) to propose the method of creation of stable models of crystal lattices. The interest to 
these problems is connected with the necessity of investigation of the mechanical deformation of 
nanotube devices, which are used intensively in the recent years in nanotechnology developments 
(Ru [1], Prinz [2]). Engineering materials and structures at the nanoscale are expected to play a 
key role in the production of the next generation of electronic devices such as single electron 
transistors, terabit memories, quantum computers, and etc. 
 

2  POISSON’S RATIO AND YOUNG MODULUS DETERMINATION 
We consider a two-dimensional single crystal shown in Figure 1. The crystal possesses an infinite 
length along x  direction and 2≥N  atomic layers in y direction. Each atom interacts only with 
its nearest neighbors, as it is shown in Figure 1. Constant tensile forces Q  are applied to atoms 
located at the crystal ends. The deformed single-crystal state under consideration is completely 
determined by the distance a  between neighboring atoms in each layer and by the interlayer 



distance h . Let us note that the crystal thickness H (its extension along y  direction), in 
principle, cannot be determined unambiguously. For example, if we assume that the crystal 
thickness is equal to the distance between the atomic layers lying on the opposite crystal ends (see 
Figure 1) then hNH )1( −= . On the other hand, it is quite reasonable to determine the crystal 
thickness as a product of the number of layers by the thickness of a single layer, which results in 
the formula NhH = . Therefore let us denote hNH *= , NNN ≤≤− *1 , where *N is the 
quantity reflecting an arbitrariness in the determination of H .  

 
Figure 1: Two-dimensional single-crystal strip. 

 
It can be easily shown that the crystal under consideration is anisotropic. We recall that the infinite 
crystal with the HCP crystal lattice is isotropic and hence the anisotropy indicated is a 
manifestation of the scale factor. Furthermore we denote  
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Here, 1ν  and E1 are the Poisson's ratio and Young modulus for the tension along x axis; the 

quantities 2ν  and E2 correspond to tension along y axis. Using relationships (1) and equations of 
the crystal equilibrium, we obtain  
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where, ∞ν  and ∞E  are values of the Poisson's ratio and Young modulus, which correspond to the 
infinite crystal (Krivtsov [3]). 
 Based on the studies performed, we can list the basic properties intrinsic to nanocrystals. 
1. For the elastic moduli of a nanocrystal only a possible interval of values is determined. This is 
associated with the impossibility of unambiguously determining the size of a nanoobject. 2. Elastic 
properties of a nanocrystal substantially depend on the number of atomic layers forming it. 3. The 
shape and size of a nanocrystal introduce an additional anisotropy into its elastic properties. 
 

3  THE BENDING STIFFNESS DETERMINATION 
Let us consider a two-dimensional single crystal shown in Figure 2. The crystal possesses 2≥N  
atomic layers in y direction and NJ >>  layers in x direction. Forces nQ  are applied to atoms 
located at crystal end-walls, where n  is the number of the horizontal layer containing the 



specified atom. These forces are changing linearly with coordinate, keeping the zero average value 
of the overall force acting on the end-wall, so that we can consider the macroscopic boundary 
conditions as an action of a pure moment (without tensile stress).  

 
Figure 2: Bending of the nanocrystalline strip. 

 
If the moment interaction between the particles is not taken into account then the bending stiffness 
of the monocrystal takes the form 
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Here ∞D  is the value for the bending stiffness from the macroscopic theory of elasticity. 
According to formula (3), for the small values of N  the bending stiffness depends essentially on 
the number of the layers. For the greater values of N  formula (3) gives the bending stiffness 
values smaller then ∞D  and finally it vanishes for 1=N .  

However, it is known that the bending stiffness of single-wall nanotubes is not zero. 
Taking into account the moment interaction of particles we obtain the following expression for the 
bending stiffness  
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where *
∞E  is the value of rotational Young modulus from the macroscopic moment theory of 

elasticity. It is easy to see that the bending stiffness of the nanocrystal given by formula (4) does 
not vanish for 1=N . 
 

4  DELAMINATION PROCESSES OF A BI-LAYERED PLATE 
The model of the delamination processes of a preliminary stressed bi-layered plate from a rigid 
foundation is proposed. A thin bi-layered plate is considered. Let 1h , 1E , 1ν and 2h , 2E , 2ν  be 
the thickness, Young modulus and the Poisson's ratio of the plate layers and L  be the plate length. 
The first layer is attached to the rigid foundation. The second layer has initial deformation 0ε  and 
it is attached to the first layer. Let us suppose that part of the plate comes off the rigid foundation 
and rolls up. In this paper the process of the bi-layered plate rolling up is simulated on the basis of 



the classical Lagrange’s equations. Process of bi-layered plate delamination is considered as a 
damage process, which is caused by weakening of the connection between the bi-layered plate and 
the rigid foundation. On the basis of the considered solution, specified dependence of the tube 
radius on the parameters of the plate layers is found 
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Dynamic equations, which describe delamination processes of a preliminary stressed bi-layered 
plate from the rigid foundation, is obtained using Lagrange’s equations. Kinetic energy of the plate 
is  
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Here 1ρ and 2ρ are density of the plate layers, l is the length of the rolled part of the plate. 
Potential energy of the plate, which part is rolled in a tube, takes the form  
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Let us write Lagrange’s equations, considering l  and R as generalized coordinates. Using new 
variables  
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we obtain the differential equation, describing the bi-layered plate rolling process 

[ ] [ ]( ) 2

2
22 )1()1(cossin2cos1sin2

r
rppq

rr
r

r
r

r
r

r
r −

−+=⎟
⎠
⎞

⎜
⎝
⎛ −
′′

−⎟
⎠
⎞

⎜
⎝
⎛ −′−′+⎟

⎠
⎞

⎜
⎝
⎛ −′′ ϕϕϕϕϕϕϕϕϕ

[ ] [ ]( ) 3
22 )1(2cos12sincossin2

r
rp

r
r

rrr
r

r
rr −

=⎟
⎠
⎞

⎜
⎝
⎛ −′′−⎟

⎠
⎞

⎜
⎝
⎛ −′−′−⎟

⎠
⎞

⎜
⎝
⎛ −′′ ϕϕϕϕϕϕϕϕϕ     

Here prime stands for the derivative with respect to τ . Numerical analysis of the system of 
differential equations (9) is carried out.  
 

5  DESCRIPTION OF CRYSTAL LATTICE (MOMENT THEORY) 
Pair potentials, describing interaction of particles, are widely used for simulation of molecular 
systems. Physical sense of these potentials is clear and they allow qualitatively description of the 
material properties. However, it is known, that these potentials can not guarantee stability for 
many crystal lattices. Traditional solution of the problem is to apply many-body potentials (Tersoff 
[4], Brenner [5]). In the presented paper alternative approach is proposed. The main idea of the 
approach is to consider the atoms as particles of general kind (not material points) and take into 
account the moment interaction between the particles.  



 
Figure 3: Moment interaction of particles. 

 
Let us consider two such particles, as depicted in Figure 3. Let us suppose that interaction between 
the particles depends on their position and orientation. The Interaction is characterized by the force 
vector F  and the moment vector M  
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where elastic energy U  and strain vectors ε  and κ  take the following form  
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Coefficients A , B , C  are stiffness tensors. Let us consider ideal simple crystal lattice 

consisting of the particles of general kind. Let αa  be vector characterizing position of the particle 
numberα  with respect to the considered particle in the reference position. Interaction of the 
considered particle and the particle number α  is characterized by stiffness tensors 
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where ne  are eigen-vectors of 
α

A  и 
α

C . Equations of dynamics for crystal packing of 

particles with rotational degrees of freedom are obtained. It is shown that in a long-wave 
approximation these equations are identical to macroscopic equations of the moment theory of 
elasticity. The expressions for stiffness tensors of the crystal lattice are  
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where *V  is volume of the elementary cell. It is easy to see that the stiffness tensors of the crystal 
lattice depend on the crystal lattice configuration and parameters, characterizing stiffness of the 
atom connection.  



 
Figure 4: Square crystal lattice. 

 
As an example the square crystal lattice is considered (see Figure 4). It is shown, that modeling the 
atoms by the particles of general kind allows stabilizing this lattice. The simplest model of the 
particle taking into account symmetry of the square lattice is proposed. This model is a rigid body, 
which consists from four material points, situated in the corners of the square (see Figure 4). Areas 
of the lattice stability are obtained for the considered model.  
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