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ABSTRACT
A new particle-based method, the material point method (MPM), has recently been extended to handle
explicit cracks in a new algorithm called CRAMP or “CRAcks with Material Points.” This new method has
several advantages for numerical work on fracture. Compared to finite element analysis, CRAMP can handle
cracks with similar algorithmic efficiency, but is better at handling crack surface contact and crack
propagation in arbitrary directions. Compared to meshless methods, CRAMP can handle arbitrary crack
propagation with similar ease, but is better at inclusion of explicit cracks. MPM/CRAMP also works well for
calculating key fracture parameters such as J integral, stress intensity factors, or crack-opening
displacements. This extended abstract summarizes the approach of the MPM/CRAMP method and illustrates
it with several example calculations including crack propagation.

1  INTRODUCTION
Numerical modeling has always been an integral part of fracture characterization of materials. For
example, all standards for plane-strain fracture toughness testing rely on numerically evaluated
geometric factors for determination of toughness or critical stress intensity factors. Modern
numerical fracture work is done using various numerical methods. This extended abstract
discusses a new numerical method, called the material point method (MPM), to provide more
options for fracture modeling. MPM is a particle-based or meshless method that uses a background
grid as a computational scratch pad. An advantage of the background grid is that MPM can handle
explicit cracks with the accuracy and efficiency of finite element analysis (FEA). Because the
solution is particle based, however, MPM can also handle crack propagation with the ease of
meshless methods. This combination of features recommends MPM as a valuable tool for studying
fracture, especially for problems involving crack propagation.

2  MATERIAL POINT METHOD WITH CRACKS
The material point method (MPM) has recently been developed as a numerical method for solving
problems in dynamic solid mechanics (Sulsky [1,2]). In MPM, a solid body is discretized into a
collection of material points or particles much like a computer image is represented by pixels. As
the dynamic analysis proceeds, the solution is tracked on the particles by updating all required
properties such as position, velocity, acceleration, stress state, temperature, etc.. At each time step,
the particle information is extrapolated to a background grid that serves as a computational scratch
pad for solving the equations of motion. Once the equations are solved, the grid-based solution is
used to update all particle properties. This combination of particle basis (Lagrangian) and non-
body-fixed grid methods (Eulerian) has proved useful for solving problems with large
deformations or rotations, with materials having history dependent properties (such as plastic or
viscoelastic materials – Sulsky [1,2]), or with complicated geometries (such as foams or granular
materials – Bardenhagen [3,4]).



Although MPM uses a background grid, a recent generalization of MPM (Bardenhagen [5])
reveals it is a Petrov-Galerkin method that has more similarities with meshless methods, such as
Element-Free Galerkin (EFG) methods (Belytschko [6]) and Meshless-Local Petrov-Galerkin
(MLPG) methods (Atluri [7]), then it does with FEA methods. The “meshless” aspect of MPM
arises because the body and the solution are described by the particle states while the grid is solely
a computational scratch pad (non-body-fixed grid). Thus, MPM has advantages of meshless
methods such as ease in describing crack propagation in arbitrary directions and elimination of
mesh distortion. The availability of a grid, however, provides some advantages in the area of
computational efficiency and accuracy. For example, the grid makes it possible to handle explicit
cracks (Nairn [8]) better than other meshless methods and simplifies calculation of fracture
parameters such as J integral (Guo [9]).

MPM, as initially derived (Sulsky [1,2]), was not capable of handling explicit cracks. The
problem is that conventional MPM extrapolates particle information to a single velocity field on
the grid. A property of the grid, which is analogous to FEA meshes and many meshless
interpolation schemes, is that displacements and velocities are continuous. Because cracks are
displacement and velocity discontinuities, conventional MPM cannot represent cracks. We have
recently derived a modified MPM labeled as CRAMP for "CRAcks" with "Material Points" that
extends MPM to handle explicit cracks (Nairn [8]). The modification in CRAMP was to allow
each node on the background grid to have multiple velocity fields. For nodes near cracks, there
will be two velocity fields corresponding to extrapolated information from opposite sides of the
crack. Cracks surfaces are discretized into a collection of massless particles (the particles are
connected by line segments in 2D or triangular surfaces in 3D). The main modifications in
CRAMP are to determine the appropriate velocity field for each particle/node pair, to solve
equations of motion separately for each velocity field, and to update particle information using the
appropriate velocity field depending on the location of the particle relative to cracks. The
appropriate velocity field is determined by calculating whether or not a line from each particle to
each node crosses a crack. CRAMP also tracks motion of crack surfaces that are used when

Figure 1: Analysis of a DCB specimen with an explicit crack using CRAMP (top) compared to
analysis by symmetry using conventional MPM (bottom). Shades of gray (black to white) indicate
tensile stress in horizontal direction.



implementing crack surface contact laws by stick or by sliding with friction (Nairn [8]), and are
used to calculate fracture parameters (Guo [9]).

2.1 Crack Patch Test
The CRAMP algorithm is an “exact” MPM solution for cracks, is efficient, and has advantages
over other meshless methods for cracks. Here “exact” means CRAMP passes the “crack patch
test” illustrated in Fig 1. A crack patch test involves solving a problem using any explicit crack
algorithm that can also be solved by standard algorithms when the crack is defined by symmetry
conditions alone. For example, Fig. 1 shows results for mode I double cantilever beam specimens
(DCB) solved either by CRAMP (top) or by standard MPM with fixed displacements along the
uncracked midplane of the specimen (bottom). CRAMP is an “exact” MPM method because the
calculations in the top half of the CRAMP solution are mathematically identical to those in the
standard MPM analysis of the symmetric problem. FEA with cracks in a mesh similarly passes a
crack patch test (for opening cracks), but other meshless methods do not. Other meshless methods
implement cracks by modification of influence zones around particles based on approximate node
visibility or stress diffraction rules for how stresses are felt across cracks (Belytschko [10], Organ
[11], Batra [12]). Although these approaches can include cracks, the use of modified
interpolations, which often depend on arbitrary diffraction parameters (Organ [11]), means the
methods do not pass a crack patch test.

2.2 Crack-Tip Fracture Parameters
Predicting crack propagation usually involves calculation of fracture parameters such as energy
release rate or stress intensity factor. We have recently shown that CRAMP works well for
calculation of J-integral, stress intensity factors, and crack-tip opening displacements (Guo [9]).
Figure 2 shows typical MPM results for a double-edge notched plate impacted between the two

Figure 2: KI(t) and KII(t) dynamic stress intensity factors for DENP specimen calculated by
CRAMP or by MLPG.



notches. The results show that MPM agrees well with prior numerical results on the same problem
(Batra [12]). By choosing the J-integral contour to be along mesh lines of the background grid, the
numerical integrations are efficient. Because CRAMP accurately tracks crack opening
displacements it is possible to partition J(t) into KI(t) and KII(t) stress intensity factors (Nishioka
[13]).

2.3 Crack Propagation
The final step for full numerical modeling is to include crack propagation. Although
MPM/CRAMP uses a background grid for efficient inclusion of cracks and calculation of J
integral, the crack geometry is defined by massless particles that are not fixed to the grid. In other
words, the crack description is meshless. This property makes inclusion of crack propagation
trivial; it is only a matter of inserting a new crack particle. The crack can propagate in arbitrary
directions unrestricted by the grid.

3  SAMPLE CRACK PROPAGATION CALCULATIONS
Figures 3, 4, and 5 show three crack-propagation examples using MPM/CRAMP. The materials
were linear elastic and the analyses were isothermal. Failure was predicted by a maximum hoop
stress criterion in which the crack propagates in the direction of the maximum hoop stress when
that stress reaches a critical value. The crack-tip hoop stress can be calculated from KI(t) and
KII(t); the critical hoop stress can be evaluated from an input KIc  toughness (Belytschko [10]).
Figure 3 shows crack propagation for the top-half of the specimen illustrated in 2. The mixed-
mode loading caused crack growth at 70˚ from the crack plane. This prediction agrees with
experimental results at low impact velocity (Kalthoff [14]). Figure 4 shows five disks under axial
impact while constrained to remain aligned (Bardenhagen [4]). The mixed-mode loading for the
angled crack under diametrical loading caused a curved crack path that ended at contact points
between the disks. The modeling agrees with results of static experiments in diametrical
compression (Shetty [15]). Figure 5 shows crack propagation in a two-phase composite in which

Figure 3: CRAMP prediction of crack propagation in the top-half of a DENP specimen. Crack
propagation direction was predicted by maximum hoop stress criterion.



the inclusions are much stiffer than the matrix. The crack path propagated through the matrix and
around the inclusions. This crack path was a natural consequence of the maximum hoop stress
failure criterion in a composite because no constraints were used to prevent propagation into the
second phase or to promote propagation along the interface.

4  CONCLUSIONS
MPM/CRAMP can handle explicit cracks with the algorithmic efficiency of finite element
analysis (FEA). FEA, however, has difficulty dealing with crack contact and severe problems
dealing with crack propagation in arbitrary directions. MPM/CRAMP solves the crack contact
problem by making use of prior contact methods developed for conventional MPM (Bardenhagen
[4]). For crack propagation, MPM/CRAMP can exploit the particle basis (or meshless nature) of
the method and easily grow cracks unrestricted by the grid. In summary, MPM/CRAMP combines
the algorithmic efficiency of FEA for inclusion of explicit cracks with the advantages of meshless
methods for handling crack propagation. It avoids the disadvantages of FEA for dealing with crack
propagation and the weakness of other meshless methods for rigorously dealing with explicit
cracks.
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