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ABSTRACT 

In this paper, a numerical method is presented for calculating the effective elastic moduli and the tensile 
strength as well as for simulating the failure process of brittle materials associated with microcracking damage. 
By introducing two criteria for microcrack growth and coalescence in terms of Griffith’s energy release rate, 
the above numerical method is used here to simulate the coalescence process of microcracks that results in a 
fatal crack and the final rupture of a specimen. 
 

 
1  INTRODUCTION 

The dependences of mechanical properties (e.g., constitutive relation, strength, toughness and 
conductivity) of materials on interacting microcracks can be divided into two types, weak (or 
indirect) and strong (or direct). The micromechanics approaches dealing with these two types of 
interaction problems are of great difference. Various methods (e.g., self-consistent method, 
generalized self-consistent method and differential method) have been established for estimating 
the impacts of microcrack interaction on the effective elastic moduli of microcracked solids [1–4]. 
These methods, with few exceptions, are based on the concept of effective (equivalent) medium or 
effective stress field, and omit concrete positions and orientations of individual microcracks. To 
date, however, estimation of effective elastic moduli of microcracked solids is still a problem of 
extensive arguments. On one hand, the accuracy and the validation scopes of these established 
methods are yet to be evaluated further. On the other hand, there is a lack of experimental data 
available in the literature for effective moduli of microcracked solids, especially for materials with 
microcracks of high density. For these reasons, it seems a promising approach to calculate the 
effective moduli for complex distributions and to evaluate the accuracy of these micromechanics 
schemes via numerical schemes. Nevertheless, little work of direct numerical analysis has been 
conducted on this subject because of the high complexity in dealing with microcracks of a large 
number [5–7]. 

With regard to strong microcrack interaction, some approximate micromechanics schemes 
(e.g., pseudo-traction method, complex potential method, and double potential method) and finite 
element methods have been developed to determine the stress intensity factors (SIFs) of multiple 
interacting microcracks of a specified array. The problem of interaction of multiple microcracks is 
often reduced to a set of integral equations, which can be solved by series expansion, perturbation, 
collocation, and some other approximate techniques. However, the number of equations increases 
very rapidly with the increase in the number of microcracks. Recently, Feng et al. [6] suggested a 
micromechanics method for calculating direct interaction of microcracks of a large number, as in 
most actual brittle materials. They carried out systematic examinations of some factors of 
microcrack distributions on the effective elastic moduli and strengths of brittle solids. 



In addition, the failure behaviors of brittle solids are generally preceded by coalescence of 
interacting microcracks to form a fatal crack that will propagate unstably. Simulation of material 
failure characterized by microcrack growth and linkage presents an issue of extensive interest both 
in theoretical analysis and in engineering applications. Due to the inherent prohibitive complexity 
and difficulties in calculation, nevertheless, little attention has been paid on the stochastic 
coalescence process of disordered microcracks. In this paper, strong interaction and coalescence of 
stochastically distributed microcracks are studied using the effective field-subregion model 
developed recently by Feng et al. [6]. The failure process of brittle specimens resulting from 
evolution of randomly distributed microcracks is simulated. 
 

2  CALCULATION METHOD 
2.1. Approximate model  
Consider a plate containing many randomly distributed, planar microcracks and subjected to a 
uniform stress ∞σ  in the far field, as shown in Fig. 1(a). Let us consider a microcrack in it, say the 
α th one, whose length is denoted as 2lα . Refer to a global Cartesian coordinate system 1 2( )o x x−  
and a local one 1 2( )o x x′ ′− , as shown in Fig. 1(c), where the ′x2 -axis is parallel to the normal αn  of 
this microcrack. The microcrack orientation is then expressible in terms of an angle, αθ , measured 
from 2x  to αn . Assume that the statistical distribution of orientations and sizes of microcracks 
satisfies a probability density function, ( , )p l θ . 

Due to the complexity in calculation of the exact SIFs of the α th crack interacting with all the 
other microcracks, some simplifications are made to yield an efficient numerical method. On one 
hand, the local stress field around a microcrack is highly sensitive to the positions, orientations and 
sizes of its neighboring cracks. In the present approximate model, therefore, a subdomain Ω  of the 
specimen is defined around the α th microcrack, as shown in Fig. 1(b). The size of Ω  should be 
much larger than the characteristic size of microcracks (e.g., 10–20 times the average length of 
microcracks), while the shape of Ω  may be specified according to the microcrack orientation 
distribution. A circular shape is generally appropriate for isotropic or weakly anisotropic 
distributions of microcracks.  

Since all microcracks outside the subdomain Ω  have been “removed”, Ω  exists in the plate as 
a weaker "inclusion" with stiffness lower than the pristine matrix. Neglecting all those microcracks 
outside leads to an incorrect result that the average stress Ωσ  over Ω  is different from ∞σ . 
According to Eshelby's inclusion theory [8], the stress and strain fields in an elliptical inclusion, 
embedded in an otherwise homogeneous infinite matrix, are uniform when a constant stress, 
denoted by 0σ , is applied in the far field. Thus, the average stress Ωσ   is expressed as [8] 

0:Ω = Bσ σ , (1) 

where the fourth-order tensor 1
0[ : ( )]−= + −B I P M M  is the average stress-concentration tensor, 

( )1
0 :−= −P M I S , I is the fourth-order identity tensor, S is the Eshelby tensor, 0M  and M  denote 

the elastic compliance tensors of the matrix and the subdomain Ω, respectively. 
If all the microcracks both inside and outside the subregion were considered, the average stress Ωσ  
over Ω  should equal approximately to the far-field stress ∞σ .  In the approximate model in Fig. 
1(b), therefore, we replace the far-field stress ∞σ  by 0σ  such that Ωσ = ∞σ .  From Eq. (1), 
therefore, the modified far-field stress 0σ  should be 



( )1
0 0: : :−

∞ ∞= = + −⎡ ⎤⎣ ⎦B I P M Mσ σ σ . (2) 

To determine the stress concentration tensor B in Eq. (2), one need to estimate first the effective 
compliance tensor M of the microcracked inclusion Ω  by using a micromechanics method [4]. 

In summary, the central idea of the present method is that the microcracks throughout the 
specimen S are skillfully divided into two sets, which are treated in different manners in calculation 
of their contributions to the SIFs of the α th crack. The interacting microcracks inside Ω  are 
introduced directly from a direct micromechanics method (e.g., Kachanov’s method [2, 5]) 
considering their concrete sizes, locations and orientations, while the influence of those cracks 
outside  is reflected merely by modifying the far-field stress. For further discussions of this 
global/local method, the reader is referred to Ref. [8]. 
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Figure 1.  (a) A microcracked solid, (b) the simplified calculation model, and (c) coordinate systems. 
 
 
2.2 Tensile strength 
The elastic energy release rate theory developed initially by Griffith is taken here as the controlling 
indicator of crack growth in brittle solids. Accordingly, the mixed-mode fracture criterion is written 
as 

( ) ( )2 2
I IC II IIC/ / 1G K K K K= + = , (3) 

where IK  and IIK  denote the mode-I and II SIFs, ICK  and IICK  their intrinsic critical values, 
respectively. For simplicity, ICK  and IICK  are regarded as material constants without dependence 
upon microcrack propagation. To determine the load-bearing capacity of a specimen, the far-field 
stress is denoted as 0m∞ ∞=σ σ , where 0

∞σ  is a tri-axial reference stress tensor, and m is a load 
factor. Thus, the α th crack will undergo an unstable propagation at one of its two tips when the load 
factor m reaches the following value 

1/ 2 1/ 22 2 2 2
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( ) ( ) ( ) ( )min ,K l K l K l K lm
K K K K

α α α α
α α α α

α

− −⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎢ + ⎥ ⎢ + ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

. (4) 

The tensile strength of a perfectly-brittle specimen is defined as the applied stress cσ  at which 
any one of the microcracks starts to propagate. That is, 



0
c cm ∞=σ σ , (5) 

where the critical load factor cm  is the minimum value of mα  among all the microcracks. 
 

3  MICROCRACK COALESCENCE AND FAILURE PROCESS 
Failure of a brittle material is often the outcome of a process which involves successive coalescence 
of interacting microcracks, formation and unstable propagation of a macro crack. In spite of the 
extensive interest in simulating microcrack coalescence, however, there seems a lack of effective 
methods for modeling the failure process associated with interaction and evolution of numerous 
distributed microcracks. To clarify some of the fundamental aspects of the physics of the brittle 
deformation process we extend our numerical scheme presented above to study coalescence of 
microcracks and the resulted facture process of microcracked solids. 

A key issue for simulating the failure process associated with microcracking is to specify 
appropriate criteria to determine at each linking step: (i) when microcrack propagation and 
coalescence will occur, (ii) which microcrack will grow, (iii) with which microcrack it will link, and 
(iv) the linking path. In fact, difficult is to give a unified criterion for linking of randomly distributed 
microcracks. The propagation and coalescence path of interacting microcracks are usually curved, 
even for two collinear cracks. Considering the contradicting requirements of rigor and simplicity, 
however, we assume that two microcracks are connected always along a straight path and that the 
linked microcrack, though zigzag, is treated as a planar one in the next coalescing step. These two 
assumptions was also made by Li and Yang [9], who discussed their acceptable reasonability and 
accuracy. 

Two criteria in terms of the energy release ratio are adopted in our simulation, though other 
criteria can also be implemented in the present method. First, the SIFs IK  and IIK  and the 
non-dimensional energy release rates G of all the microcracks in the considered specimen are 
calculated in each step by our novel method. The microcrack, denoted as A, that has the maximum 
value of G will propagate in the following step. The critical load for propagation of crack A is 
obtained by using the criterion GA=1 defined in Eq. (3), where the subscript A stands for a quantity 
of crack A.  

Besides Eq. (3), another criterion is required to determine which nearby crack will coalesce 
with A. For illustration, the right tip of A in the configuration in Fig. 2(a) may be linked with cracks 
B, C or D. The coalescence is dictated here by an energy ratio defined as [9] 

s(2 )R c∏ / γ= ∆ , (6) 

where ∏∆  denotes the release of potential energy caused by the linking of two neighboring 
cracks, c the ligament size, and sγ  the surface energy per unit area of the matrix. The parameter R 
represents the ratio between the released potential energy and the energy required to create two 
surfaces along the broken ligament during the coalescence. The larger the ratio R, the bigger the 
driving force of coalescence. Cracks A and B will be connected if RAB is the maximum among RAI, 
where I stands for any of the cracks neighboring to A. 

Then the potential energy contributed from the α th microcrack can be calculated by 

( ) ( )1
2 12 ( ) ( ) d

l

l
p b bα

α

α α α α
α∏ ξ ξ τ ξ ξ ξ

−
⎡ ⎤= +⎣ ⎦∫ , (7) 

where ( )pα ξ  and ( )ατ ξ denote the normal and shear pseudo-tractions on the surfaces of the α th 

crack, 2 ( )bα ξ  and 1 ( )bα ξ its opening and sliding displacements [2]. Summing over α∏  before and 



after the microcrack linkage, one can obtain the potential energy release ∏∆ and the energy ratio R 
from Eq. (6). 

In addition, some more complicated situations of microcrack linkage have also been 
considered in our simulation. An example is schematized in Fig. 2(b). After the crack A is connected 
with B, it is also possible for the right crack tip of A to coalesce with another crack, say C, since the 
SIFs of the connected A-B crack may be lower than those of A before connection. The secondary 
coalescence of the right tip of A, also governed by the energy ratio, is also accounted for. For similar 
reasons, it is also possible for a specimen to have several different positions where coalescences 
occur. This happens mainly in the initial stage of failure.  

Before the final rupture of a specimen, there are many coalescence steps. Such a complicated 
process can be simulated by a step-by-step numerical method. For convenience, only one 
coalescence is considered in each step of calculation. 
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Figure 2.  Configurations of microcrack linkage. 
 

4  EXAMPLE 
A rectangular concrete specimen of length 0.8m and width 0.4m is taken as an example, which is 
exposed to uniaxial tension in the 2x direction. 500 cracks with completely random positions and 
orientations are produced by a computer program. The crack half-lengths satisfy a normal 
distribution law ( )lΦ  with the mathematical expectation of 5 mm and the variance of 1 mm. The 
material parameters are taken as: Young’s modulus 50.35 10 MPaE = × , Poisson’s ratio 0.17ν = , 
the critical SIFs 1 2

IC 0.165 MPa mK = ⋅  and IICK =  1 20.33 MPa m⋅ . The simulated failure process 
of such a specimen is given in Fig. 3, which contains 22 steps of linkage before the final rupture. 
Basically, the zigzag fracture path is normal to the tensile direction. Both the effective modulus and 
the tensile strength of the specimen have a tendency to decrease during the failure process though 
some fluctuations exist due to the strong interaction of microcracks and the kinking of the failure 
path, as shown in Fig. 4. Furthermore, our simulations predict an evident size dependency of failure 
of brittle materials: a specimen of larger size generally has a lower strength than a smaller specimen 
with the same microcrack distributions. 
 

5  CONCLUSIONS 
An approximate method is presented here to calculate the interaction of microcracks of a large 
number. Its central idea is that all the microcracks in a specimen are divided into two sets, which are 
dealt with in different ways. The interacting microcracks within a subdomain around the considered 
microcrack are calculated by using direct interaction method, while the influence of other 
microcracks is reflected by modifying the far-field stress.  
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Figure 3.  Microcrack coalescence process of a specimen. 
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Figure 4.  Changes of (a) the Effective Young’s modulus and (b) the tensile strength of 
the specimen during the microcrack coalescence process. 
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