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ABSTRACT 

In this paper the fatigue behavior of a edge cracked plate is considered. The strain energy density 
theory is applied . The fatigue crack growth model adopted is the one due to Sih and Barthelemy, 
which assumes that the fatigue crack growth is controlled by the fluctuation ∆S of the Strain 
Energy Density Factor S.  
A simple method for obtaining approximate stress intensity factors is also applied. It takes into 
account the elastic crack tip stress singularity while using the elementary beam theory.  
 

1 INTRODUCTION 
The classical linear elastic solution for the stress field around a crack is  
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where  ijσ are the stresses acting at a distance  r from the crack tip. The angle ϑ  is measured from 

the crack plane, while Κi are the “stress intensity factors”  with ( )ijf ϑ being  known functions 
of ϑ.  For small r the higher order  terms are negligible compared to the first term . Hence,  the use 
of the first term only is perfectly adequate for the analysis of crack behavior. The stress intensity 
factors ΚI, ΚII and ΚIII  are associated with the three basic modes of deformation : mode I or 
“opening mode”, mode II or “sliding mode”, mode III or “tearing mode”. They are functions of the 
loading on the cracked configuration , of the size and shape of the crack, and of other geometrical 
boundaries. It is significant to note that Κi have the dimensions of stress x length . The elastic 
solution predicts infinite stresses at the crack tip. In reality this cannot occur since there is plastic 

flow in this highly stressed region. If this region is small compared to that over which the 
1
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dominates, the stress intensity domain should provide an  adequate description of the crack tip 
stress field. 
Linear Elastic Fracture Mechanics is widely used to describe many aspects of crack behavior. 
Knowledge of the stress intensity factors plays an important role in fracture control.  
Stress intensity factors for many configurations are available . In most cases the results were 
obtained by means of analytical and numerical methods. In many cases the results were obtained 
by finite element methods and boundary  element methods. Experimental methods have been 
applied to simple cases in order to determine the fracture toughness KIC of engineering materials. 
Solutions for many structural configurations are not available in the handbooks.  
Simple engineering methods which allow a fast but approximate determination of the stress 
intensity factors are highly valued to a design engineering. 
One of the purposes of this note is to employ a new simple method [1,2] for approximate 
evaluation of stress intensity factors in cracked plates. The method takes into account the elastic 



singularity and is derived by the equilibrium condition for internal forces evaluated in the cross 
section passing through the crack tip. Simple formulas for SIFs are derived. The results show a 
good approximation when compared to known solutions. 
 

2 APPROXIMATE EVALUATION OF STRESS INTENSITY FACTORS: SINGLE 
EDGE CRACKED PLATE TENSION SPECIMEN  

 Consider the single edge cracked plate tension specimen (Fig 1).  
 

Fig.1. Schematic view of a plate tension specimen 
 
According to Sain-Venant principle, the analysis can be performed in reference to N=Tht, being t 
the thickness. Since the neutral axis of the reduced cross section passing through the crack is 
shifted by e=a/2,the  distribution of normal stresses on this cross section is: 
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where a is the crack length, ∗A  and ∗
xI   are the reduced cross-sectional area and  the moment of 

inertia for the reduced  part of the cross section , respectively. The singular stress component is 
related to the Mode-I stress intensity factor as in Eq. (3). The procedure by which the approximate 
stress intensity factor KI can be obtained is reported in [2].  
The stress intensity factor can be written as: 
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where 
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 The function  f1(a/h) can be compared with the expression by Brown and Srawley [3] :  
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The comparison is shown in Fig. 2. The agreement between the proposed method and the other 
approach appears good. 

Fig. 2. Stress intensity factors for tension specimen. 
 

3 STRAIN ENERGY DENSITY THEORY 
Referring to the problem of fracture mechanics, the strain energy per unit of volume can be written 
as [4-6]: 
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where S is the strain energy density factor and it is related to the stress intensity factors as follows: 
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where the coefficients aij are defined by: 
 

 a11 = 
πµ16
1

[(3-4ν -cosϑ )(1+cosϑ )] (8a) 
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πµ16
1

(2sinϑ )[cosϑ -(1-2ν )] (8b)                   

 a22 = 
πµ16
1

[4(1-ν )(1-cosϑ )+(1+cosϑ )(3cosϑ -1)] (8c)  

and µ is the second Lamè constant of elasticity. 
Note that the strain energy density allows to consider all the three Modes of Fracture together and 
so it can be used to predict crack initiation in spatial problems. 
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The fundamental hypotheses of crack extension following the Strain Energy Density Theory can 
be summarized as follows. The crack will spread in the direction of the minimum strain energy 
density and the critical value of S (say Scr) governs the onset of the crack propagation.  
Summarizing, the crack begins to propagate in the 0ϑ direction, when the following conditions are 
satisfied: 
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The critical value of  S is a material parameter and for the isotropic case is related to KIC. 

 
4 FATIGUE BEHAVIOUR 

In order to analyze the fatigue behavior of a notched beam under a cyclic load, the fatigue crack 
growth model adopted is the one due to Sih and Barthelemy [7]. The model assumes that the 
fatigue crack growth is controlled by the fluctuation ∆S of the Strain Energy Density Factor S. 
After a finite number of loading cycles ∆N, the crack advances by an amount ∆a as a consequence 
of the accumulation of a critical amount of the Strain Energy Density: 
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The fatigue crack growth relation can be written as: 
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where n and C are material parameters. Note that the quantity ∆S has to be calculated in the 
direction of the fatigue crack growth that it is still assumed to be defined by the angle 0ϑ , 
obtained minimizing the strain energy density. 
Eq. (13) has to be replaced by: 
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∆Smin is defined by: 
 
 ( ) ( )min 0 max 0 min,T ,TS S Sϑ ϑ∆ = −  (15) 

Introducing the stress intensity factor ranges ∆kj and the mean  stress intensity factors k j  (j=1,2), 
Eq. (15) becomes: 
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Note that Eq. (16) contains both the cyclic load range and the mean cyclic load. 
 

5 FATIGUE LIFE FOR EDGE CRACKED PLATE 
Refer to the problem reported in fig. 1. The Mode-I crack extension will occur. The strain energy 
density factor S will be: 
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where the stress intensity factor KI is reported in Eq. (3). 
The direction of crack extension is defined by 0 0ϑ = .  Hence Eq. (13) yields: 
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where: 
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are the stress range and the mean stress respectively. 
Integration of Eq. (18) leads to 
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with ai and af the initial and final crack length. 
Referring to a plate made of Aluminium Alloy 2024-T3 [8], with h=50mm the fatigue life is 
analysed making use of Eq. (19) . The initial crack length is assumed to be ai=2.5mm. 
Fig. 3 shows the fatigue life of the cracked plate for different values of the maximum stress, 
assuming: 
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Fig. 3. Fatigue crack growth prediction for a edge cracked plate. 
 

6 CONCLUSIONS 
A simple method for obtaining approximate stress intensity factors is applied to the problem of a 
edge cracked plate. It takes into account the elastic crack tip stress singularity while using the 
elementary beam theory. The results are in reasonable agreement with the more accurate 
calculations. 
Making use of the strain energy density theory, the fatigue behavior of the cracked plate is 
analyzed.  The dependence of the fatigue crack growth on the value of the maximum stress is 
considered. 
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