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ABSTRACT

It has recently been shown that, for mixed mode problems in two dimensions, highly accurate stress

intensity factors can be obtained by combining the simple Displacement Correlation method with a

new crack front element. This ‘modified quarter point element’ adds a cubic term to the standard

quadratic element, forcing the crack opening displacement to satisfy a known constraint at the

front. In the present work, this two dimensional analysis has been extended to three dimensions.

The fracture computations have been carried out by solving boundary integral equations, and in

particular, the hypersingular integral equation for surface traction. Part of this work has therefore

involved the development of algorithms for evaluating hypersingular surface integrals. Boundary

limit evaluation methods initially developed for the Galerkin formulation using linear elements have

been successfully extended to higher order interpolation. These algorithms are based upon analytic

integration, and directly evaluate the hypersingular integrals without reformulating or regularizing

the traction equation.

1 INTRODUCTION
The key quantities of interest in computational fracture analysis are the stress intensity
factors (SIFs), as these determine crack propagation. A significant advance in this area was
the development of the quadratic quarter point element Henshell [1], Barsoum[2]. With this
element, the square root singularity of the crack opening displacement at the tip could be
easily incorporated in the numerical interpolation. Nevertheless, this method did not always
result in highly accurate SIFs.

For example, consider a mixed-mode example having a pair of circular-arc cracks em-
bedded in a plate subjected to a remote biaxial tension σ, as shown in Figure 1. The exact
SIFs for this problem (as a function of the separation angle θ) are known; the dashed lines in
Figure 2 are the percentage errors in the computed KI and KII obtained using the standard
quarter point element. The opening mode KI is reasonably accurate when the cracks are
not interacting, but becomes steadily worse as θ approaches π. On the other hand, KII is
not at all reliable.

The significantly more acccurate solid lines in this figure are the results if the quadratic
quarter point element is modified to include a cubic contribution Phan [3] . The purpose of
this higher order term is to insure that the interpolated crack opening displacement satisfies
a known constraint, the term that is linear in distance to the front must vanish Gray [4] .
Further examples of the improved accuracy seen with the modified element can be found in
[3].

Based upon the success of this initial work, the goal is to now extend these methods to
three dimensions.

2 THREE DIMENSIONS
The first task is to establish that the constraint on the crack opening displacement (vanishing
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Figure 1: Pair of circular-arc cracks.
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Figure 2: Effect of crack interaction on SIFs.

of the linear term) also holds in three dimensions. This has been implicitly assumed in Li [5],
and has yielded very accurate SIFs. The argument is a straightforward generalization of the
proof in two dimensions. If the limiting value of the traction at the crack front is computed,
the linear term from the crack opening displacement yields a logarithmic singularity: as the
traction must be finite, the linear term must vanish. The expression for the traction at the
front is obtained from the boundary integral formulation for elasticity, discussed below.

The second major aspect of this work concerns the numerical solution of the elasticity
equations. As in two dimensions, the fracture computations will be carried out using a
Galerkin approximation of the corresponding boundary integral equations Bonnet [6]. In



this approach, the hypersingular equation for surface traction is employed on the crack
surface. This equation is obtained by diferentiating the equation for surface displacement,

uk(P ) +
∫

∂Ω

{
Tkj(P, Q)uj(Q)−

∫

∂Ω

Ukj(P, Q)τj(Q)
}

dQ = 0 , (1)

yielding an expression for surface stress,

σlk(P ) +
∫

∂Ω

{Slkm(P,Q)um(Q)−Dlkm(P, Q)τm(Q)} dQ = 0 . (2)

The traction formula then results from taking the appropriate inner product. Here um(Q)
and τm(Q) are the components of the surface displacement and traction vectors, ∂Ω is
the boundary of the domain, and U(P, Q) is the well known Kelvin solution. The other
kernel functions T (P, Q), D(P,Q), and (the hypersingular) S(P,Q) are appropriate linear
combinations of derivatives of U . The Galerkin form of these equations [5,7] is obtained by
multiplying by a weight function and integrating with respect to P .

ξξ∗∗

ηη∗∗

θθ

ρρ

((ηη, , ξ)ξ)

-1 1t

Figure 3: First polar coordinate transformation, {η∗, ξ∗} → {ρ, θ}, for the coincident inte-
gration.

In previous work, the evaluation of the Galerkin hypersingular integral has been success-
fully accomplished by applying Stokes’ Theorem to regularize the integral, Li [5] and Frangi
[7] . In this work, we apply a recently developed approach that evaluates the hypersingular
(and singular) integrals directly, Gray [8] . This method is based upon defining the integral
as a boundary limit, moving the point P off the boundary a distance ε, P → P + εN, where
N is the unit normal at P . For ε > 0 the integral is nonsingular, and after appropriate
analytic integration, formulas for the limiting value ε → 0 can be derived.

For example, for the coincident integration (when the integrals with respect to P and Q
are over the same element), the first step is to replace the Q parameters by polar coordinates



(ρ, θ) centered at P , as indicated in Fig. 3 For linear elements, the variable ρ can then be
integrated analytically, as the distance function (which appears in the denominator of the
Green’s function expressions) takes the simple form

r2 = ‖Q− P‖2 = a2ρ2 + ε2 . (3)

For higher order interpolation, required for the crack tip analysis, the distance function
is no longer a quadratic in ρ, and the analytic integration cannot be executed as for linear
elements. A primary task of this work is to therefore extend the techniques in [8] to this
situation. This is accomplished by splitting the integrand into what is essentially a ‘linear
interpolation’ component that can be integrated analytically, and a nonsingular remainder
component that can be evaluated numerically.

Not surprisingly, it is found that, as in the linear element analysis, the coincident and
adjacent edge integrals are separately divergent. However, the divergent terms can be ex-
plicitly computed and shown to cancel when all integrals are summed. Thus the complete
hypersingular integral is a well defined finite quantity.
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