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ABSTRACT

The present paper is concerned with the modeling of low-cycle fatigue of ductile metals at high

stress levels. Two models, characterized by a combination of micropore damage models with an

elasto-plastic material model incorporating isotropic and kinematic hardening at finite strains are in-

vestigated. Phenomena associated with cyclic plasticity such as the Bauschinger-effect, ratcheting

or mean stress relaxation, cyclic hardening or softening as well as the accumulation of microdamage

are considered in the coupled model. For the modeling of cyclic plasticity, a superposition of sev-

eral kinematic hardening laws according to Armstrong-Frederick is employed. The modeling of

damage accumulation under cyclic loading is based on the classical micropore models by Gurson

and Rousselier. Both micropore damage models are extended to cyclic loading and to combined

isotropic and kinematic hardening using concepts proposed by Leblond et al. Both micropore

damage models differ fundamentally in the functional relationship associated with the hydrostatic

stress term in the yield conditions. In the paper, the performance of both coupled models in cyclic

uniaxial loading is investigated by means of a numerical benchmark example.

1 INTRODUCTION

Failure of cyclically loaded metallic structures resulting from Low-Cycle Fatigue (LCF) oc-
curs already after a relatively small number of loading cycles and initiates, in general, in
highly plasticized zones such as notches of the structure. Typical loading scenaria are filling-,
emptying- and refilling-processes of metallic tanks or pressure vessels or cyclic settlements
of foundations, caused, e.g. by earthquakes. In general, low-cycle fatigue of polycrystalline
materials is characterized by the development of persistent slip bands due to internal dis-
location movements on the micro-scale eventually leading to the initiation and growth of
microcracks. However, in ductile metals subjected to high levels of stress, damage is also
caused by debonding at matrix-particle interfaces (at initial defects like inclusions or pre-
cipitates) which eventually leads to the initiation and growth of microvoids (Figure 1). This
was observed e.g. in the notch root of notched tensile specimen (see [6] and references
therein). Hence, micropore damage models originally developed for the description of the
nucleation and growth of microvoids in metals subjected to monotonic loading [4, 9] have
recently attracted attention in the context of cyclic loading (see e.g. [7, 11]).
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Figure 1: Typical stages of isotropic micropore damage

As far as constitutive modelling of LCF is concerned, two phenomena have to be repre-
sented: Firstly, the Bauschinger-effect, ratcheting and cyclic hardening observed during
cyclic loading of metals in the plastic regime and secondly, the accumulation of damage
induced by microvoid growth. In the paper, two existing models for micropore damage un-
der monotonic loading, the Gurson- [4] and the Rousselier-model [9], are adopted and
extended to cyclic loading. Both models are combined with kinematic hardening formula-
tions using, according to Chaboche [2], a superposition of several hardening laws. Since,
in general, LCF is associated with large plastic deformations, the model is formulated in a
finite strain continuum mechanics framework.

2 CYCLIC PLASTICITY MODEL COUPLED WITH FATIGUE DAMAGE

In this section, first the finite strain elasto-plastic material model is presented. Subsequently,
the coupling with micropore damage is described.

2.1 Elasto-plastic material model for cyclic loading at finite strains

The proposed finite strain elastoplastic model considering isotropic and kinematic hard-
ening is based on the multiplicative decomposition of the deformation gradient F = FeFp

into an elastic Fe and a plastic part Fp (see e.g. [10]). In what follows, tensors related to

the intermediate state will be denoted by ˆ(. . .). The Helmholtz-free energy function is
given by

ψ = ψe + ψp, ψe = ψe(Ĉ, Ĝ
−1) , ψp = ψp(Âi, α) , (i = 1, 2, ...n) , (1)

with the elastic right Cauchy-Green tensor Ĉ = F∗
egFe, where (. . .)∗ denotes the adjoint

of a second-order tensor, the metric of the intermediate configuration Ĝ−1 = Ĝij Ĝi ⊗ Ĝj

as well as the internal state variables Âi and α associated with kinematic and isotropic
hardening, respectively. The elastic part is defined by a hyperelastic law of Neo-Hook-
type using a deviatoric-volumetric split:

ψe =
1

2
κ (lnJe)

2 +
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2
µ (J−2/3
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where Je is given by

√

det(ĈĜ−1). For the plastic part of the free energy function the
following definition is used:
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with a hardening modulus H, an initial and an asymptotic yield stress σY0
and σY∞

, re-
spectively, the model parameters δ and ci, and a parameter β to control the amount of
kinematic and isotropic hardening. From the Clausius-Duhem-inequality follows the hy-
perelastic material law and a reduced form of the dissipation inequality :

Ŝ = 2
∂ψe

∂Ĉ
, ĈŜ : L̂p +

n
∑

i=1

Υ̂ΥΥi :
˙̂
Ai − q α̇ ≥ 0 (4)

with the plastic velocity gradient L̂p = ḞpF
−1
p , the back stress tensors Υ̂ΥΥi = −ψp,Âi

and
q = ψp,α. The dissipation inequality takes the form:

(ĈŜ− Υ̂ΥΥ) : L̂p +
n
∑

i=1

Υ̂ΥΥi : (
˙̂
Ai + L̂p)− q α̇ ≥ 0 (5)

with Υ̂ΥΥ =
∑n

i=1 Υ̂ΥΥi according to Chaboche [2]. By using J2-plasticity, the principle of

maximum dissipation and by setting (
˙̂
Ai + L̂p) = γ̇ b

ci

Υ̂ΥΥi
∗, which is motivated by the fact

that dissipated energy should always be positive (using positive constants b, ci and the
(positive) consistency parameter γ̇), the following evolution laws are obtained:

L̂p = γ̇ N̂ = γ̇
∂F
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,
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bi

ci
Υ̂ΥΥi

∗ , α̇ = γ̇

√

2

3
. (6)

By expressing the evolution law for Âi in terms of the back stress Υ̂ΥΥi using (3), the final
kinematic hardening law of Armstrong-Frederick-type [1] formulated with respect to
the reference configuration is obtained as:

Υ̇ΥΥi = γ̇ (1− β) (ci N∗
− biΥΥΥi) + L∗

pΥΥΥi −ΥΥΥiL
∗
p , (i = 1, 2, · · · , n) . (7)

2.2 Extension to Gurson- and Rousselier-type ductile damage models

Following the work of Leblond et al. [5] who proposed a consistent extension of the
original Gurson-model to combined isotropic and kinematic-hardening, the corresponding
yield functions are formulated as:

FGurson =
(ĈŜ− Υ̂ΥΥ)2eq

q21
+ 2 f∗ q cosh

(
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(8)

with the equivalent relative stress (ĈŜ − Υ̂ΥΥ)eq =

√

3
2

(
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: Î, the hydrostatic
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: Î∗, the isotropic hardening parameter q1 belonging to



the deviatoric part, the isotropic hardening parameter q2 belonging to the hydrostatic part,
and the void volume fraction f∗ defined according to Needleman & Tvergaard [8].
The yield function FGurson describes an ellipsoid in the principle stress space, whereas the
Rousselier-type yield function is non-symmetric with respect to the plane tr(ĈŜ) = 0.
Hence both models fundamentally differ in their descriptions of damage accumulation in
cyclic loading of ductile metals. The hardening parameters q1 and q2 are given by:

q1 =
(1− f0)

(1− f)
σY0

+
1

(1− f)
β σ1 , q2 =

(1− f0)

(1− f)

(

σY0
−

1

ln(f)
β σ2

)

, (9)

where the transformation from Cauchy stresses to Mandel stresses in the yield conditions

requires the use of the plastic Jacobian-determinant Jp = (1−f0)
(1−f) . To extend the micropore

damage models to non-proportional loading paths a Taylor series expansion of the isotropic
hardening terms σ1 and σ2 is proposed, which for the case of linear isotropic hardening results
in:
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b and a are the radii of the plasticized spherical volume cell and the center pore (with the

coupling f = a3

b3 ). < d2
eq >r represents the averaged (over a slice of thickness dr) equivalent

plastic strain increment < d2
eq >r= D̂2

peq+4 b6

r6 D̂
2
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√

2
3dev(D̂p) : dev(D̂

]
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associated form.
The back stress tensor used in the kinematic hardening model can be split into a volu-

metric and a deviatoric part as follows:

Υ̂ΥΥ =

n
∑

i=1

dev(Υ̂ΥΥi) + Υ̂m Î∗ . (11)

Considering Jp, the volumetric part and the deviatoric part are defined by:
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(12)

Note that b̄i is different for both models and is obtained by considering the asymptotic stress
in the uniaxial tension-compression case. Nucleation of voids is modeled according to Chu

& Needleman [3]. Considering preservation of mass [9], the growth law is obtained as:

ḟ = ḟnucl + ḟgrowth , ḟgrowth = (1− f)tr(L̂p) . (13)

3 NUMERICAL EXAMPLES AND DISCUSSION

To investigate the prediction capability of the micropore damage models one single finite
element has been analyzed numerically over 45 cycles under deformation-controlled uniaxial
tension (see Figure 2). The results obtained from the Gurson model (see Figure 3) show
that the void volume fraction f increases in the first cycle, then drops below the initial
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Figure 2: Tensile test of a single element under cyclic deformation-controlled loading: (a) system
and material parameters, (b) cyclic loading history
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Figure 3: Uniaxial cyclic tensile test of a single element during 45 cycles: Results obtained for the
Gurson-model and a Armstrong-Frederick kinematic hardening law. (a) Result for the void
volume fraction, (b) numerical results for the uniaxial stresses σ<22>

0 . 0 5

0 . 0 7 5

0 . 1

0 . 1 2 5

- 0 . 0 1 0 . 0 2 0 . 0 5 0 . 0 8 0 . 1 1

D u  [ m m ]

( a )

vo
id

 v
ol

um
e 

fr
ac

ti
on

  f

- 4 0 0

- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

- 0 . 0 1 0 . 0 2 0 . 0 5 0 . 0 8 0 . 1 1

D u  [ m m ]

( b )

un
ia

xi
al

 s
tr

es
se

s 
s<

22
>

 [
M

P
a]

Figure 4: Uniaxial cyclic tensile test of a single element during 45 cycles: Results obtained for
the Rousselier-model and a Armstrong-Frederick kinematic hardening law. (a) Result for the
void volume fraction, (b) numerical results for the uniaxial stresses σ<22>



void volume fraction of f0 = 0.05 and continues in a stable loop in the f − ∆u-diagram.
Accordingly, the softening effect in the stress component σ<22> (Figure 3b) is negligible.
In contrast, the Rousselier-model leads to a continuously growing void volume fraction f
(see Figure 4a). The increments of the void volume fraction, however, are decreasing with
increasing number of cycles. The softening effect in the stress component σ<22> (Figure 4b)
is more pronounced. Hence, from this numerical test, it is concluded that the Rousselier

model is better suited to predict accumulation of damage under cyclic loading. However,
closure of pores in a plasticized matrix material, as predicted by the Gurson model, has
also been observed in unit cell calculations carried out in [11]. Further studies, based on
more complex boundary value problems such as notched tensile specimen, have to be per-
formed before further conclusions on the performance of microvoid models in cyclic uni- and
multiaxial loading situations can be drawn.
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