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ABSTRACT
This study extends the Weibull stress approach to address effects of strength mismatch on macroscopic fracture
toughness of interface cracks. The approach builds on the Bereminmodel to establish a relationship between the
microregimeof fracture andmacroscopic crackdriving forces for bimaterialmedia by adopting theWeibull stress
(σw) as a probabilistic fracture parameter. Plane-strain, small scale yielding (SSY) reference fields for stationary
interface cracks are presented to provide ameasure ofmismatch effects. The analyses show a strong effect ofmis-
match level on the magnitude of the Weibull stress which enables assessments of fracture behavior in interface
cracks.

1 INTRODUCTION

This study extends the Weibull stress approach [1] to address effects of strength mismatch on
macroscopic fracture toughness of interface cracks. The approach builds upon the Beremin model
[2] to establish a relationship between the microregime of fracture and macroscopic crack driving
forces (such as the stress intensity factor, K, and the J-integral) for bimaterial media by adopting the
Weibull stress (σw) as a probabilistic fracture parameter. In the context of probabilistic fracture me-
chanics, the Weibull stress emerges as a near-tip fracture parameter to describe the coupling of re-
mote loading (as measured by K or J) with a micromechanics model describing transgranular cleav-
age. A key feature of this methodology is that σw incorporates both the effects of stressed volume
(the fracture process zone) and the potentially strong changes in the character of the near-tip stress
fields due to strength mismatch in the bimaterial system. Plane-strain, small scale yielding (SSY)
reference fields for stationary interface cracks are presented to provide a measure of mismatch ef-
fects. The analyses show a strong effect of mismatch level on the magnitude of the Weibull stress
which enables assessments of fracture behavior in interface cracks. These SSY results exhibit the
essential features of the micromechanics approach in correlating macroscopic fracture toughness
with strength mismatch variations.

2 THE WEIBULL STRESS FOR INTERFACE CRACKS

Recent developments in micromechanics methodologies to describe transgranular cleavage fracture
have adopted the Weibull stress (σw) [1,2] as a fracture parameter which provides a robust coupling



between the microregime of fracture (which includes a local failure criterion and the stresses that
develop ahead of a macroscopic crack) with macroscopic (remote) loading. For a stationary macro-
scopic crack lying in homogeneous materials, the Weibull stress is given by integration of the (local)
principal stress over the fracture process zone in the form [1]

σw=  1V0

Ω

σ1
mdΩ1∕m , (1)

where σ1 is the maximum principal stress, V0 is a reference volume, Ω denotes the volume of the
(near-tip) fracture process zone defined by the loci σ1 ≥ λσ0 with λ ≈ 2, and parameterm (theWei-
bull modulus) define the microcrack distribution.

For bimaterial systems, such as the interface crack along two different materials schematically
represented in Fig. 1, the fracture process may result from a complex interplay of the operative fail-
ure mechanism for each individual material. For a given remote loading, themismatch in mechanical
properties, such as E∕σ0 and ν, between both materials produce crack-tip stress and strain fields quite
different than the fields that arise in the corresponding homogeneous material. Moreover, with in-
creased levels of strength mismatch between both media, the fracture process zone for each material
differs significantly from those for a homogeneous material.

A simplified form for σw applicable to bimaterial systems is adopted in the present work. Refer-
ring to Fig. 1 which shows a crack lying along an interface separating material 1 and material 2, we
define the Weibull stress corresponding to each media as
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where the subscript k denotes the k-th material, Ωk is the fracture process zone for material k and
mk denotes the Weibull modulus for material k. Since the Weibull stress can be associated with a
crack-tip driving force incorporating a local failure criterion (see Ruggieri and Dodds [1]), the pres-
ent definition for σw implies that fracture of the entire bimaterial system takes place in only onema-
terial.

3 COMPUTATIONAL PROCEDURES AND FINITE ELEMENT MODELS

3.1 Small Scale Yielding Model

The modified boundary layer model (MBL) [6] simplifies the generation of numerical solutions for
stationary interface cracks under well-defined SSY conditions with varying levels of strength mis-
match. Figure 1 shows the plane-strain finite element model for an infinite domain, single-ended
interface crack with an initially blunted notch (finite root radius, Ã= 10μm). The SSY model has
one thickness layer of 4130 8-node, 3-D elements with plane-strain constraints imposed on all nodes.

With the plastic region limited to a small fraction of the domain radius, Rp < R∕20 (R is the ra-
dius of the outer circular boundary), the general form of the asymptotic crack-tip stress fields well
outside the plastic region in polar coordinates (r , θ ) is given by [5]
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Figure 1 SSY model for an interface crack with a K-field imposed on boundary.
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where K is the stress intensity factor, fij(θ) define the angular variations of in-plane stress compo-
nents. In the present investigation, numerical solutions are generated by imposing displacements of
the elastic, Mode I singular field on the outer circular boundary (r= R) which encloses the crack
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3.2 Constitutive Models and Finite Element Procedures

The elastic-plastic material employed in the analyses follows a J2 flow theory with conventional
Mises plasticity. The uniaxial true stress-logarithmic strain curve obeys a simple power-hardening
model in the form

Á
Á0=

σ
σ0

Á≤ Á0 ;
Á
Á0=  σσ0

n

Á> Á0 (6)



where σ0 and Á0 are the reference (yield) stress and strain, and n is the strain hardening exponent.
The three-dimensional computations reported here are generated using the research code

WARP3D [4]. The finite element analyses consider material flow properties for the base metal (ma-
terial 1) representing a typical structural steel with n=10 (moderate hardening) and E∕σ0=500.
From these mechanical properties for the base metal, the matrix analysis for the bimaterial system
is constructed by adopting the flow properties for material 2 as shown in Table 1. These ranges of
properties reflects the upward trend in yield stress with the decrease in strain hardening exponent
characteristic of ferritic steels. In all analyses, E=206 GPa and ν=0.3.

σ10 (MPa) σ20 (MPa)n1 n2

0.8 Undermatch

Evenmatch

1.5 Overmatch

412

412

412

10

10

10

330

412

618

5.9

18

10

Table 1 Mechanical properties for the bimaterial system employed in the analyses.

Numerical computations of the Weibull stress used to construct σw vs. K trajectories for the SSY
model are performed using the research codeWSTRESS [3] which implements a finite element form
of Beremin’s formulation [2]. The process zone used here includes all material inside the loci
σ1 ≥ λσ0 , with λ=2; results for σw differ little over a wide range of λ-values.

4 EFFECT OF STRENGTH MISMATCH ON FRACTURE RESISTANCE

The simplified form of the Weibull stress, given by Eq. (2), provides the basis to assess effects of
strength mismatch on the fracture resistance for bimaterial systems, such as the one depicted in Fig.
1. The procedure relies on the notion of σw as the crack-tip driving force [1] which establishes a
robust coupling between the applied load and level of mismatch thereby describing the local, crack-
tip response for cleavage fracture. In all analyses, the Weibull modulus is adopted as m=20, which
is representative of cleavage fracture in typical ferritic steels [1,2].

Figure 2 displays the evolution of the Weibull stress normalized by the yield stress σk0 (k=1,
2) (note that the normalizing stress corresponds to the material upon which σw is computed) with
increased loading. For all levels of mismatch and material combination, the Weibull stress increases
monotonically with the K-levels. The most striking feature of these results is the development of σw
with increasing loading for the mismatched conditions (see Figs. 2(b-c). The normalized levels of
σw for theweakermaterial are consistently higher than the corresponding σw-levels for the stronger
material in all material combinations. In the context of the micromechanics approach adopted in the
present work, such results provide important features associated with the fracture resistance of bi-
material systems. The physical significance is this: strength mismatch alters the fracture resistance
for the bimaterial media. In particular, the effect of strength overmatch has important implications



for the fracture behavior of the weaker material. Although strength overmatch ‘‘shields’’ the stronger
material, it potentially causes substantial increase in the crack-tip driving force in the weaker materi-
al as quantified by σw . Such behavior may adversely impact the load-carrying capacity of the entire
bimaterial system with an interface crack.

6 CONCLUDING REMARKS

This work has presented a micromechanics-based framework to assess the effects of strength mis-
match on fracture resistance of bimaterial systems. To incorporate the pronounced effects of strength
mismatch on the crack-tip stress fields and on the near-tip stressed volume (i.e., the fracture process
zone ahead of the crack), the methodology adopts the Weibull stress, σw, as a near-tip, local fracture
parameter. The strength mismatch affects the evolution of σw under increasing applied load which
reflects on fracture resistance of interface cracks. While the work has not explored an extensive
range of material combinations, the relative operational simplicity and robustness of the Weibull
stress approach encourages further investigations in procedures for fracture assessments of bimater-
ial media with interface cracks. Further work is in progress to develop a more refined framework
employing the Weibull stress which is more applicable to bimaterial and multimaterial systems.

Acknowledgments

This investigation is supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) through
Grant 03/02735-6. and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERENCES

1. Ruggieri,C. andDodds,R.H., ‘‘ATransferabilityModel forBrittleFracture IncludingConstraint andDuc-
tile Tearing Effects: A Probabilistic Approach,” International Journal of Fracture, Vol. 79, pp. 309-340,
1996.

2. Beremin,F.M, ‘‘ALocalCriterion forCleavageFractureof aNuclearPressureVesselSteel,”Metallurgical
Transactions, Vol. 14A, pp. 2277−2287, 1983.

3. Ruggieri, C., ‘‘WSTRESS Release 3.0: Numerical Computation of Probabilistic Fracture Parameters for
3-D Cracked Solids,” BT−PNV−51(Technical Report), EPUSP, University of São Paulo, 2002..

4. Koppenhoefer, K., Gullerud, A., Ruggieri, C., Dodds, R. and Healy, B., ‘‘WARP3D: Dynamic Nonlinear
AnalysisofSolidsUsingaPreconditionedConjugateGradientSoftwareArchitecture”,StructuralResearch
Series (SRS) 596, UILU−ENG−94−2017,University of Illinois at Urbana−Champaign, 1994.

5. Williams,M.L., ‘‘On theStressDistribution at theBaseofaStationaryCrack”,JournalofAppliedMechan-
ics, Vol. 24, pp. 109−114, 1957.

6. Larsson, S. G. and Carlsson, A. J., ‘‘Influence of Non−Singular Stress Terms and Specimen Geometry on
Small ScaleYielding atCrack−Tips inElastic−PlasticMaterials”,Journal of theMechanicsand Physicsof
Solids, Vol. 21, pp. 447−473, 1973.



Figure 2Weibull stress trajectories for the SSY model with varying levels of strength mismatch.
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