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ABSTRACT 

In order to study the relation between the ohmic resistance measured in a thin conducting ribbon and the 
length of a transversal cut, we employ a one-parameter deformed exponential and logarithm that were 
recently introduced in the framework of a generalized statistical mechanics. The analytical results have been 
compared with the data that was experimentally obtained and numerically computed with the boundary 
element method. Remarkably, the new deformed functions that interpolate between the standard functions 
and the power law functions, allow the best fit of the experimental data to be obtained for a wide range of the 
cut length. 
 

1  INTRODUCTION 
Non controlled fracture phenomena in bodies of any size and made of any type of materials is one 
of the most challenging puzzles in non equilibrium physics (Gerede [1]). In particular, concerning 
the problem of crack propagation in brittle material, for instance, glass or brittle plastic, some 
experimental (Fineberg et al. [2], Boudet et al. [3]) and theoretical papers (Abraham et al. [4], 
Omeltchenko et al. [5]) have been published but, until now, the accordance between experimental 
and theoretical results has been poorly satisfied (Sharon et al. [6], Ching [7]). 
     In experimental works, the fracture speed can be determined using an electronic indirect 
method. First, one needs to determine (experimentally and/or numerically) the electric resistance 
variations of a thin conductive film (eventually deposited on the specimen to be fractured) with 
respect to the fracture length. Than, one acquires a signal variable in time related to the rupture 
length: usually an out-of-balance voltage from a bridge circuit in which one arm contains the 
variable resistance. Finally, it is possible to calculate the fracture speed propagation by comparing 
the experimental data with an opportune model. 
     In this work we analyse the electric resistance variation undergone by a conductive ribbon 
whose initial width is progressively reduced by an artificial cut of a given length. The fracture 
length is hand controlled and measured. The corresponding electrical resistance values that are 
obtained up to complete rupture of the specimen, are compared with the numerical results obtained 
using the  boundary element method (BEM). By employing the κ-exponential function 
(Kaniadakis [8,9]), we obtain the analytical relation between the electric resistance variations 
measured through the whole ribbon and the fracture length, by interpolating both the experimental 
and numerical data. 
     Remarkably, the κ-exponential is a smooth function interpolating between the classical 
exponential and the power law function. It can be successfully used in the study of problems 
showing a power law asymptotic behaviour.  
      

2  EXPERIMENTAL SET UP 
We now consider an ideal fracture experimental set up to determine the relation between the 
resistance and the cut length through the ribbon. The two-dimensional geometry of the sample is 
illustrated in the insert of figure 1. The sample is a ribbon with a rectangular shape of length L0 = 
FA and height h = BB'. The fracture is performed experimentally by cutting it with a sharp knife, 



 

 

step by step, along the median line FA. The solid line FG = b represents the fractured line, while 
the dashed line GA = s indicates the unbroken part of the ribbon, thus L0= s + b. The electrical 
resistance R of the conductive ribbon can be measured by applying a current generator in CD ad 
C’D’and measuring the voltage drop, that increases with the cut length.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Plot of the rescaled resistance r(ℓ) = R(ℓ) - R(0) data vs the normalized fracture 
                     length ℓ = b/L0 obtained experimentally (full circle) and numerically (open circle).  

                                The insert shows the geometrical setup of the ribbon. 
      
 
     The numerical simulation starts by considering the mirror symmetry with respect to the fracture 
line FGA. For simplicity, we consider only the rectangular domain W = ABCDEFGA, with G = ∑W 
its boundary, and introduce the following notation: G1 = GCD the contact junction of the ribbon 
with the external circuit, G2 = GGA the length of the plate which is not yet broken, and G3 = GAB » 
GBC » GDE » GEF » GFG the boundary of the sample without electric flux across it. The boundary of 
the region W thus results to be G = G1 » G2 » G3. Finally, let U(x, y) be the electric potential 
normalized to unity; we assume the following essential condition: U(x, y) = 1 on G1 and U(x, y) = 
0 on G’1  where G’1 = GC’D’. From symmetry considerations we pose U(x, y) = 1/2 on G2, which is a 
natural condition. 
     The mathematical problem of the computation of the electric potential on the sample is 
described by the following Cauchy problem for the Laplace equation on the domain W:  

               
(1) 

 
with ∑U(x, y)/∑n = 0 on G3, where n is the outgoing unitary vector normal to the boundary G3. In 
the stationary regime, the current flow through the ribbon is: 
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     Taking into account the boundary condition, we obtain the potential difference between the 
junctions G1 and G2: 

            
(3) 

 
and, from Eqns (2) and (3) one has the expression of the resistance of the ribbon: 
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Figure 1 shows the data of the rescaled resistance r = R(ℓ) - R(0) with respect to the normalized 
length of the fracture ℓ = b/L0, obtained both experimentally (full circle) and numerically (open 
circle). 
 

2  κ-DEFORMED EXPONENTIAL AND LOGARITHM  
Recently (Kaniadakis [8,9,10]), starting from an one parameter deformation of the statistical 
mechanics, which reduces to the ordinary Boltzmann-Gibbs theory as the deformation parameter κ 
approaches zero, it has been introduced a κ-deformed version of the exponential and the 
logarithmic functions, namely the κ-exponential and the κ-logarithm. 
     The κ-exponential is a continuous, one parameter function: 
 

(5) 
 
which conserves many properties of the standard exponential which we recall briefly.  
     The κ-exponential exp{κ}(x) = exp{-κ}(x), is a positive definite and increasing function for xœ √ 
and κœ (-1, 1), that reduces to the standard exponential for κ Ø 0, exp{0}(x) = exp x.      
Remarkably the κ-exponential decreases for x Ø -¶ and increases for x Ø +¶ with the same 
steepness: exp{κ}(x) exp{κ}(-x) = 1, and the scale law hold in the form [exp{κ}(x)]l = exp{κ/l}(lx). 
Moreover, the asymptotic behaviours of the κ-exponential for small and large x are given, 
respectively: 

 
,                                                                                       (6) 

 
     The plot of the κ-exponential with κ = 0.3, compared with the classical exponential and the 
power function ax1/κ with a = 0.182, is shown in figure 2, in logarithmic scale. The same figure 
emphasizes the two asymptotic regions that show that the κ-exponential is a smooth function 
which interpolates between the classical exponential and the power function. 
     The inverse function, the κ-logarithm, can also be introduced: 

 
(7) 

 
     This is a real and increasing function for x > 0, reducing, in the κ Ø 0 limit, to the standard 
logarithmic: ln{0}(x) = ln x. It satisfies the relation ln{κ} (x) = ln{-κ}(x) and the following scaling 
law: ln{κ} (xl) = lln{lκ}(x). The asymptotic behaviours for small and large x are, respectively 
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Figure 2. Comparison of the κ-exponential function (κ = 0.3) with the  

                   Classical exponential and the power function ax1/κ  (a = 0.182). 
 
 

     The κ-entropy, defined by: 
  

,                                        (10) 
 
reduces to the standard Boltzmann-Gibbs entropy S0[f] = -kBÛf ln f d3v as κ Ø 0. In (Kaniadakis 
[8]) it is shows that Sκ is obtained by a continuous deformation of S0 and preserves its fundamental 
properties of concavity, additivity and extensivity. Starting from this entropy it is possible to 
construct a generalized statistical mechanics and thermodynamics, that have the same 
mathematical and epistemological structure of the standard Boltzmann- Gibbs theory. 
     According to the MaxEnt principle, the distribution function f obtained by optimising Eqn (10) 
with the constraints Ûf d3v = 1 for  the normalization and ÛE f d3v = < E > for the mean energy is 
given by 

 
(11) 

 
and depends on the unspecified parameter b, that contains all the information about the 
temperature of the system. The parameters a and l are related to κ by the relations.   
           
                                                            ,      and                                                       (12) 
 
     We remark that the distribution (11) show an asymptotic long tail with a power law behaviour. 
     As shown in (Kaniadakis [8]),  the origin of the deformation mechanism introduced by κ, 
emerges naturally within Einstein's special relativity. The value of the free parameter κ in 
particular depends on the light speed c. Only in the classic limit c Ø ¶ the parameter κ approaches 
zero. Thus the κ-deformation is originated from the finite value of light speed and results to be a 
purely relativistic effect. 
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     The cosmic rays represents the most important example of relativistic statistical system which 
manifestly violates the Boltzmann statistics. In (Kaniadakis [8]) it has been shown that the κ-
statistics can predict very well the experimental cosmic ray spectrum. This is an important test for 
the theory because the cosmic rays spectrum has a very large extension (13 decades in energy and 
33 decades in flux). 
     Let us consider now statistical systems (physical, natural, economical, etc.) in which is 
involved a limiting quantity like the light speed in the relativistic particle system. For these 
systems where the information propagates with finite velocity, it is reasonable suppose that the κ-
deformation can appear, so that the κ-statistics results to be the most appropriate theory to describe 
these systems.  
 

4  DATA ANALYSIS 
Let us now introduce the rescaled length l(r) = 1- ℓ(r) with l(0) = 1 and l(¶) = 0, and  take the 
following ansatz: 

 
(13) 

 
 
where the temperature r0 and the deformed parameter κ are related in an unspecified way to the 
physical and geometrical properties of the ribbon and constitute a set of free parameters. 
     The determination of these parameters is well accomplished by matching Eqn (13) with the 
experimental data. If we look at the asymptotic expression of Eqn (13) for a large value of r, from 
Eqn (6) it follows that: 
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Figure 3. Best-fit of the fracture data using the κ-exponential distribution with  

                                the deformed parameter κ = 0.3 and temperature r0 = 0.5. 
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where r¶ = r0/2κ is a constant. Eqn (14) is a straight line whose slope is given by the inverse of the 
deformation parameter κ. On the other hand, the quantity r¶, related to the temperature r0, 
produces a translation of the curve along the rescaled length axis. 
     Figure 3 is a plot of Eqn (13) (κ = 0.3, r0 = 0.5) in logarithmic scale, compared with the 
experimental and numerical results presented in figure 1. It shows an excellent agreement between 
the analytical and both numerical and experimental data for a wide range of values of the rescaled 
length l(r). It should be noted that,  for scale reasons,  the first point  of figure 1  corresponding  to 
l = 0 has been removed. 
     We can remark that the relation obtained between the rescaled  resistance and the cut length is 
not a consequence of the particular geometrical set up that was here adopted. In fact, it can be 
observed that whether the position of the cut line FA, than the position of the elements CD and 
C’D’ where the current generator is applied are changed, or the length and height of the ribbon are 
changed the results are always qualitatively the same. 
     In conclusion the following remarks can be made. The experimental data confirm, as do the 
numerical  results  of  BEM,  that,  in  the  situation  in  which  a  current  flux  goes through a thin 
conductor whose section in a point is shrunk by a running fracture, the relation between the 
resistance and the reduced section must be considered with care. The BEM algorithm intrinsically 
takes into account, in the resistance evaluation, the complete statistical distribution of the infinite 
paths the current can follow in the fracturing ribbon. From a statistical point of view, this means 
that the distribution of the measured l(r) is the typical distribution of nonextensive statistical 
systems. We have shown that the relation between the electric resistance and the cut 
lengthdepends on the size of the transverse section of the conducting channel. From Eqn (13) we 
obtain for sØ0 the following asymptotic behaviour R(s) - R(0) è s-|κ| . This relationship between the 
resistance and the transverse section must be taken into account in the experimental works in 
which the speed of the fracture is determined through resistance measurements. 
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