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ABSTRACT 
 
With microstructural scale models, we examine the morphological stability and the kinetics of structural evolution for a 
multilayer system taking into account the different thermodynamic driving forces including chemical, elastic and 
interfacial energies. The description embodies the required conservation laws, the grain-size, physical and chemical 
properties of the individual layers, and flaw information to model the temporal evolution.  We identify stability maps 
and estimate the system lifetime given the microstructural length scales and physical properties of the constituent layers 
and operating conditions including high temperature creep and thermal cycling. 
 
In this paper, the thermal stability and the failure kinetics for a strained free-standing columnar grained polycrystalline 
thin film is examined.  We track the shape evolution of the film when mass flow is controlled by grain boundary and 
surface diffusion phenomena and determine the critical time for pinch-off of the grains when the film is subjected to an 
imposed strain rate, simulating tensile creep conditions. The coupled time scales associated with surface diffusion, 
grain boundary diffusion and the applied loading rate are considered in the formulation and numerical results are 
derived in the limit where grain boundary diffusion is infinitely fast.   The analysis shows that the pinch-off lifetime 
depends on only two normalized parameters: the aspect ratio of the grains and the applied strain rate.    
 
1.0 INTRODUCTION  
 
Multilayered film systems exhibit many interesting structural and mechanical properties.  For instance, 
metallic multi-layers, with bilayer periods in the order of a few nanometers, possess yield strengths that are 
within a factor of two to three of the theoretical strength limit of ≈ E/30 where E is Young’s modulus [1-4].   
A potential application for such systems is in the area of high-temperature applications, whether in a direct 
load bearing application or as a protective coating.   Due to the large interface density in these systems, 
morphological stability and creep are important considerations at high homologous temperatures.  The 
thermodynamic driving forces that destroy layering includes chemical energy (that leads to solutionizing, 
intermixing, etc), elastic strain energy (residual stresses in the layers, and applied stresses), and interfacial 
free energies.  The drive to reduce the sum total of these energies leads to instabilities in the layered 
structure, either through mixing of the layers, atomic rearrangement, or breakdown of the layering through 
capillary forces.  In this paper, we examine thermal stability and the failure kinetics for a strained free-
standing columnar grained polycrystalline film.  We track the shape evolution driven by grain boundary 
and surface diffusion and determine the critical time for pinch-off when the film is subjected to an imposed 
strain rate, simulating tensile creep conditions.  We limit our attention to the simpler problem of a single 
free-standing film case and deal with the multilayer case in future work.  For the problem analyzed in this 
paper, there are three coupled time scales to consider - that associated with surface diffusion, grain 
boundary diffusion and the applied loading rate.  We focus on the limit where grain boundary diffusion is 
infinitely fast but the remaining two time scales are comparable and compute the evolution kinetics by 
solving the coupled problem.  
 
 
2.0 MODEL  
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Fig 1: Schematic illustration of a thin film loaded along the axis 



Consider the geometry shown in figure 1.  The thin film consists of columnar two-dimensional grains of 
length L(t) and with grain boundaries of height H(t).  The fundamental unit cell analyzed is shown in figure 
1 (the grain boundary extends from 2/)t(Hz0 ≤≤  and the free surface extends from 0 ). 
Material may diffuse along the free surfaces, and also along the grain boundaries.  The diffusion is driven 
by a variation in chemical potential, which causes atom migration from regions of higher to lower potential. 
We assume that the rate of mass transport is proportional to the chemical potential gradient.  The governing 
equations for grain boundary (  stress evolution and for free surface  shape 
evolution can be written [6-8] as: 
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 ( δ ) is the temperature dependent diffusion coefficient of the grain boundary (free surface), 
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is the atomic volume, T is the absolute temperature, and k is the Boltzmann’s constant.  We examine the 
limiting case of infinitely fast grain boundary diffusion first.  Also, we consider the thin film being 
subjected to a constant longitudinal external strain rate (s) such that )st(ExpL)t(L 0= .  We choose the 
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τ ) and the normalized film thickness at the groove ( )(τη ) depend on only the aspect ratio 
parameter  and the dimensionless strain rate M ∆ .    
 
 
3.0  RESULTS  
 
For the general non-zero strain rate case, the coupled partial differential equations presented in equation 2 
are numerically solved and the results presented below. 
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Figure 2  Temporal evolution of the surface profile for different strain rates (setting M = 0.5) 
 
The temporal evolution of the surface profile for different strain rates is summarized in Figure 2.  Material 
flows from the surface into the grain boundary and grooving is observed.  With the choice of parameters 
used for rescaling the spatial dimensions, the surface profile is invariant for different strain rates at small 
times.  However at large times the re-normalized surface profile evolution grows faster for larger strain 
rates and the scale invariance breaks down. 
 



At the early stages of evolution, material depletion occurs at the groove depth irrespective of the whether 
the strain rate is tensile or compressive, since the dihedral angle (parameter M) dictates the material 
evolution at the junction.  The groove depth should therefore be invariant for different strain rates.  
However, on marching forward in time, the surface profile at the groove root is no longer scale invariant 
and the profiles are no longer self-similar.  The junction shows grooving under tensile strain rate conditions 
and hillock formation under compressive strain rate loading.  Furthermore, the rate of grooving (hillock 
formation) is faster for more positive (negative) values of the strain rate parameter ( ∆  ). 
 
Figure 3 shows evolution of the normalized film thickness (η ) at the grain boundary as a function of the 
normalized time and for different tensile strain rates. As the strain rate is increased, the η decreases faster.  
At some finite time, the thickness reaches zero and film pinch-off occurs.  For the same grain aspect ratio 
film, pinch-off occurs earlier at larger strain rates.  Also, as the grain aspect ratio parameter is increased, η  
decreases leading to earlier pinch-off . 
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Figure 3:  Evolution of the film thickness (η ) at the grain boundary as a function of the normalized time 
for different tensile strain rates and for two different aspect ratio parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:Evolution of the film thickness (η ) at the grain boundary as a function of time for different 

tensile strain rates (solid lines) and comparison with ετητη −= e)( 0 (dashed lines).  
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Figure 4 shows evolution of the film thickness (η ) at the grain boundary as a function of time for different 
tensile strain rates (solid lines) and comparison with )(Exp)( 0 τ∆−η=τη (dashed lines).  The dashed 
lines correspond to the thickness decrease of the film for the case of creep completely being accommodated 
by deformation of the bulk.  The results suggest that the rate at which thickness decreases locally at the 



grain boundary is much faster than the decrease decrease for the case of bulk deformation.  This is because 
in the case of creep by bulk deformation limit, the layer thins uniformly.  On the other hand, in the creep 
driven by grain boundary and surface diffusion, material at the grain boundary locally thins faster. 
 
As the tensile strain rate increases, material flows faster from the grain boundaries to the free surface in 
order to accommodate the deformation.   However, for a finite thickness film, the available flux is finite 
and the film will eventually pinch-off.  The time required for pinch-off is set by )( cτη =0 and cτ  can be 
determined   Figure 5 shows the pinch-off time as a function of the strain rate and for two different grain 
aspect ratios.  As the aspect ratio increases, the net available flux diminishes and hence pinch-off occurs 
earlier. 
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Figure 4:  Time required for pinch-off as function of strain rate using two different failure criteria. 
 
Also, shown in figure 5 is time for pinch-off time using the criteria Y ),( cτ0 =0.  Since the decrease of the 
film thickness is first dictated by local balance of surface forces followed by thickness reduction to 
accommodate the imposed tensile strain, it is possible that pinch-off could occur for very thin films due to 
lack of insufficient material to satisfy the dihedral angle condition.   As is evident in the figure, the time 
predicted with the )( cτη =0 criteria is expected to vastly overestimate the pinch-off time especially for 
very thin films. 
 
4.0 SUMMARY 
 
In this paper, the thermal stability and the pinch-off failure kinetics for a free-standing polycrystalline film 
under a constant applied loading rate was studied.  A mathematical formulation was presented for the 
coupled problem where the time scale for surface diffusion is comparable to the time scale associated with 
the loading rate.  The solution describes how the surface profile and the nominal film thickness evolve as a 
function of time.  The pinch-off failure time under a tensile applied load is predicted as a function of the 
strain rate and the grain size. 
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