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ABSTRACT
An internal friction-damage coupled model is derived from a micromechanically based description
of the response of brittle materials. The material is modeled as an elastic isotropic matrix
containing a statistically uniform distribution of crack-like defects. Under the simplifying
assumption of non-interacting and self-similar propagating flat cracks having the same shape and
random locations and orientations, displacement discontinuities due to microcrack opening and
sliding are treated as inelastic contributions to the mean strain.

The model is based on two tensor-valued internal variables, representing damage and frictional
contact tractions and governing the microscopic mechanisms responsible for the global inelastic
response. The use of a tensor-valued variable for damage, in particular, makes the model to be
capable of describing the load-induced anisotropy of damage in brittle materials. In the framework
of thermodynamics with internal variables, overall frictional sliding and crack growth criteria with
associated flow rules are introduced to complement the model that should be formulated in
incremental form, because of nonlinearity and stress-path-dependence of the constitutive response
to arbitrary stress applied to a brittle material at an arbitrary current state.

As an example, the model response to proportional loading has been analysed. In this case no
crack changes its status and explicit solutions are possible. On the basis of these results, biaxial
and triaxial failure envelopes, together with some characteristic stress-strain curves, have been
obtained and used for both identification and validation of the model.

1  INTRODUCTION
Brittle behavior exhibited by many real materials is the result of nucleation and propagation of
crack-like microdefects, commonly referred to as damage. Most literature has focused on
modeling phenomenologically and micromechanically the progressive degradation of mechanical
properties for such materials due to damage evolution (e.g. Krajcinovic [1,2], Carol [3], Feng [4]).
On the other hand, under predominant compressive stress states, damage may be accompanied by
residual deformation due to possible frictional resistance to sliding of the internal crack surfaces.
Despite the fact that damage-elasto-plasticity theories have been formally addressed and discussed
[2], the frictional sliding-damage interaction has been often disregarded. Restricting the analysis to
plane loading conditions, models for brittle solids under compression based on the sliding crack
mechanism have been a first step (Nemat-Nasser [5], Basista [6]).

Within the framework of thermodynamics with internal variables, convenient for dealing with
the constitutive modeling of such dissipative materials, Gambarotta and Lagomarsino [7]
incorporated the damage – frictional sliding interaction in their microcrack damage model, based
on the concept of damage planes. The ensemble of microcracks was thought of as consisting of
sets of identical equi-oriented flat cracks and the orientation fields of the characteristic size of the
cracks and of the vector of contact tractions were treated as internal variables. Built on this
previous work, the strategy applied in this paper for the reduction of the computational effort uses
approximate representations of the orientation fields mentioned above in terms of appropriate
series expansion of generalized spherical harmonics. A more convenient description for damage



and contact tractions in terms of two second-order tensors as new overall internal variables is then
obtained. A first simple version of this approach has been recently proposed by Gambarotta [8]
and is developed here as a generalization of the isotropic damage model of Brencich and
Gambarotta [9], who adopted a single scalar variable to describe damage.

2  THE CONSTITUTIVE EQUATION
Brittle materials are modeled as elastic isotropic matrices containing a population of non-
interacting and self-similarly propagating flat cracks having the same shape and random locations
and orientations. Each set of equi-oriented cracks is described in terms of the unit vector n∈Ω
normal to the crack plane (the unit hemi-sphere in ℜ3 being denoted by Ω) and of the average
characteristic size of the cracks. Normal and tangential displacement jumps across the crack faces
are treated as inelastic contributions En and Et to the mean strain E that can then be written as:
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where K  is the fourth-order elastic compliance tensor of the matrix and T is the mean stress.
Operators ⊗  and  in eqn (2) denote diadyc product and its symmetric part, respectively;
whereas dΩ is the infinitesimal solid angle representative of the neighborhood of n. For each set of
n-oriented cracks: αn≥0 is the ratio between the current average crack size and a reference size,
assumed as damage variable related to the n-oriented plane; nσ = n Tni  and

( ) ( ) 'n = − ⊗ = − ⊗I n n Tn I n n T nτ  are the resolved stresses on the crack plane, the deviatoric
component of T being denoted by T' (trT'=0); pn and fn are, respectively, the normal and tangential
contact tractions acting on the crack faces and assumed to be uniform. Finally, under the further
assumption of identical crack number density for all the planes, constants cn and ct are,
respectively, normal and tangential microcrack compliance parameters.

According to this approach, radially symmetric scalar-valued functions αn=α (n)=α (−n) and
pn=p(n)=p(−n) and anti-symmetric vector-valued function fn=f(n)=−f(−n) can be regarded as
internal variable fields defined on Ω. On the other hand, their use makes the formulation too
cumbersome for any practical application. The strategy applied in this paper for the reduction of
the computational effort then uses approximate representations of such orientation fields.

First, as radially symmetric orientation function, the new damage variable 3( )n na a α= =n  is
approximated by the first two nonzero terms of its expansion in a Fourier series of generalized
spherical harmonics (Kanatani [10], He [11]), so allowing the form:

( ) 'Ia a≈ + =n n A n n Ani i ,  (3)
where A is a symmetric second-order tensor (AT=A), denoted damage tensor; aI  and A' stand,
respectively, for the hydrostatic (trA=3aI) and deviatoric (trA'=0) components of A. At the
undamaged state A0=0, whereas during the damage process A is positive definite. Note that a
positive definite second-order tensor in particular reflects both the essential properties of load-
induced anisotropy (namely, orthotropy) and irreversibility of damage.

Secondly, as regards contact tractions, a linear Coulomb condition and frictional sliding with
no extension are assumed for each crack plane:

0n n npµ+ ≤f      together with     [ ] 0n np σ= − − ≤ , (4)

where µn is the friction coefficient and [•] denotes the McAuley operator. From eqn. (4) it follows
that: (i) the normal tractions pn=p(n) vanish when tensile stresses act, that is on the set of



orientations { | 0}Ω Ω+ = ∈ ≥n n Tni , whereas it depends explicitly on the mean stress tensor T
on the set of compressive planes Ω Ω Ω− += − ; (ii) the tangential tractions fn=f(n) equal the zero
vector on planes with Ω +∈n , while they turn out to be unknown on planes with Ω −∈n . By
analogy with shearing stresses, the field f(n) over Ω−  is approximated as follows:

( ) ( ) ( ) '≈ − ⊗ = − ⊗f n I n n Fn I n n F n , (5)
where F' is the only significant deviatoric component (trF'=0) of the symmetric second-order
tensor F=FT, denoted internal friction tensor, that =0 if Ω − ≡ ∅ .

Under the above assumptions, a simplified model where damage and friction tensors A and F'
replace fields a(n) and f(n) as new internal variables is developed. The constitutive equation (1)
can be shown to assume finally the form:

( )[ ] [ ] [ ]n n t t t tc c c+ + −= + + + −E T A T A T A T FK H H H , (6)
where the matrix elastic moduli and constants cn, ct play the role of model parameters, whereas

n
+H  and t

±H  are fourth-order crack opening and open/closed crack sliding compliance tensors
defined by eqns (A.1-2) together with eqns (A.4-5). As suggested by the constitutive equation (6),
postulating the following Gibbs free-energy function:
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permits one to associate F' and A with their thermodynamically conjugate variables, respectively:
the closed crack sliding strain tensor t

−E  and the symmetric, positive definite second-order tensor
Y, denoted damage energy release rate tensor:
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t
±L  being the fourth-order tensors given by eqn (A.3) together with eqns (A.4-5).

3  INTERNAL FRICTION AND DAMAGE EVOLUTION
In the framework of thermodynamics with internal variables, the proposed constitutive equation
must be complemented by limit conditions, governing potential activation of dissipation
mechanisms, and equations of evolution for the associated internal variables, describing the way
irreversible processes evolve. According to the model proposed, the two dissipative
micromechanisms of frictional contact between opposite faces of existing cracks and microcrack
evolution, dominating the brittle constitutive response, are considered and described in terms of
overall (tensor-valued) variables. So must be defined in a overall form the associated limit
conditions and kinetic laws of activation and evolution of both irreversible processes of
deformation.

As an example, generalizing the first equation of (4), a global sliding criterion is defined in
terms of mean values of the contact tractions in the form:

2
2| | ' [ ] ' 0s tpΦ µ µ− −= < > + < >= + ≤f F I F N Ti iH , (9)

where 2
−N  is an orientation tensor given by eqn (A.6), <•> denotes average over Ω and µ

represents an overall friction coefficient. Provided that the limit state 0sΦ =  is attained, the way
sliding occurs is described by assuming the following evolution equation for the mean sliding
strain due to closed cracks, thermodynamically associated with F':

t sλ
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having defined the symmetric, traceless second-order tensor Vs as:
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whereas the unknown rate 0λ ≥�  can be obtained as solution of a Linear Complementarity
Problem (LCP): 0sΦ ≤� , 0λ ≥� , 0sΦ λ =�� . It is worthwhile to note that the sliding condition is not
active when tensile stresses act on all the crack planes.

Second, generalizing the Griffith criterion, the condition for damage evolution is defined as a
global energy balance between the energy release rate Y and the material fracture toughness R(A)
in the following form:

3 (| |) 3 ( ) 0d R R DΦ = − = − ≤Y A Y    with   D=1/3|A|2. (12)
Other choices are certainly possible, but introduce a higher level of complexity to the formulation.
A proper choice of the toughness function, which requires in general a phenomenological
approach to determine, permits one to model the progressive stiffness degradation exhibited by
brittle materials up to the limit strength and in the subsequent softening phase. Namely, R must
first increase with increasing damage (R'>0) until a maximum Rc is attained at a critical damage
Dc, then decrease (R'<0) until vanishing. Provided that the limit state Φd=0 is attained, the
following equation of damage evolution is assumed to describe the way microcracks propagate:

d d=A V �� , (13)
having defined the symmetric, positive definite (because of the irreversibility condition of
damage) second-order tensor Vd  as:
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The unknown rate 0d ≥�  is then obtained as solution of a LCP: 0dΦ ≤� , 0d ≥� , 0d dΦ =�� .

4  MODEL RESPONSE TO PROPORTIONAL LOADING
Because of nonlinearity and stress-path-dependence of the constitutive response, the model should
be necessarily formulated in incremental form to predict the constitutive response to arbitrary
stress applied to a brittle material at an arbitrary current state and requires, in general, numerical
analyses to perform. Proportional loading is an exception and explicit solutions are possible as
well.

In the case of proportional loading, the stress tensor at an arbitrary state can be expressed as
0δ=T T , constant tensor 0T  describing the load direction and loading multiplier 0δ ≥  being

positive. Two considerations follow. Firstly, the sets of tensile/compressive orientations are
effectively governed by 0T ; thus, 0T  being constant, so orientation tensors also, the status of the
crack planes does not change during the loading program. Secondly, under the assumption of
initially undamaged material, both internal variables can be shown to vary proportionally
according to: 0d=A A  and '

0' δ=F F  with 0A , '
0F  constant tensors and d≥0. Despite stress-path-

dependence of the constitutive response, from eqn (6) the model can be written in the final form:

{ }' ' '
0 0 0 0 0 0 0 0[ ] [ ] [ ]( )n n t t t td c c cδ + + −⎡ ⎤= + + + −⎣ ⎦E T A T A T A T FK H H H , (15)

where damage parameter d must be regarded as function of δ obtained by solving the nonlinear
limit damage state equation Φd=0.



Figure 2. Model response to uniaxial tension.

Figure 1. Biaxial limit domain.

Figure 3. Model response to uniaxial compression.

On the basis of these results, biaxial and triaxial failure envelopes, together with some
characteristic stress-strain curves, have been obtained and used for both identification and
validation of the model. As an example, figures 1, 2 and 3 show the biaxial limit strength domain
and some related stress−strain curves, computed for some values of model parameters. Note that:
(i) nonlinearity of the overall responses reflects damage evolution, which in the specific case of
compression tests is accompanied by frictional sliding; (ii) if unloading is initiated, since damage
evolution is locked, a linearly elastic tensile response is observed, whereas in compression the
bilinear unloading branch reflects the occurence of backsliding. These results in general confirm
the previous Brencich and Gambarotta [8] simulations but the use here of a second-order tensor
rather than a single scalar variable permits a more convenient description for the load-induced
anisotropy (namely, orthotropy) of damage.

It is straightforward that, because of the assumption of statistically uniformly distributed
damage as an ensemble of non-interacting microcracks, the model is inherently incapable of
predicting the onset of macroscopic failure, occurring as damage localization into bands and
coalescence of microdefects into a macrocrack. Practical application of the model is then restricted
to the hardening phase of the mechanical response of brittle and quasi-brittle materials.
Furthermore, due to the self-similar crack growth, the characteristic feature of dilatancy cannot be
captured. On the other hand, with all of its limitations, in this model effects of anisotropic damage
and frictional sliding for prescribed (even complex) loading are combined in a relatively simple
formulation which takes the physics of the problem into account.
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6  APPENDIX
For the sake of brevity, details of the approach are omitted and only the final explicit

expressions for the inelastic compliance tensors are given [12]:
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having introduced the notation ( ) T T( ) / 2=B C X B X + X C  and being 6
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following sixth-, fourth- and two-order orientation tensors:
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