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ABSTRACT 
An analytical model that allows prediction or reproduction of the overall stress-strain relationship of a high 
performance cementitious composite in tension is presented. Through consideration of stochastic character of 
the composite microstructure, the model captures the sequence of crack formation and the load fluctuations 
that are characteristic for the process of multiple cracking. The proposed model is used to reproduce/predict 
hardening stress-strain curves of an Engineered Cementitious Composite (ECC). Results capture the effect of 
introducing artificial flaws on the composite ductility, which has been reported in experimental studies. 

1 INTRODUCTION 
Multiple cracking is a fracture phenomenon observed in certain fiber-reinforced brittle-matrix 
composites when they are exposed to tensile stress. As opposed to formation of a single localized 
crack, multiple cracking manifests itself by generation of a large number of distributed matrix 
cracks bridged by fibers. These cracks usually form a very fine pattern, having spacing much 
smaller than length and exhibiting very small (sub-millimeter) opening displacements (see inset in 
Figure 1). Consequently, multiple cracking permits the composite material to accommodate 
significant deformations while retaining a macroscopic integrity and small crack width. 
Composites with cement-based matrix exhibiting such a behavior are often desirable in the field of 
civil engineering; namely as materials for repair of reinforced concrete structures, durable bridge 
deck overlays, continuous pavements, anti-seismic retrofit and others.  
 Over the past decade, a micromechanics- and fracture mechanics-based methodology has 
been developed, which facilitates a conscious design of cement-based material composition so as 
to achieve multiple cracking even with low volume fractions of short random fibers. Due to low 
fiber content, these materials can be easily mixed and shaped by various techniques (casting, 
extrusion, spraying, etc.). Composites produced according to the latter methodology are called 
Engineered Cementitious Composites (ECC) (Li [1]). 
 In the ECC material design theory, the effect of fibers spanning a matrix crack (fiber 
bridging) is accounted for through the relationship between 
bridging stress and crack opening displacement. Then, in 
order to achieve multiple cracking the following two criteria 
have to be simultaneously satisfied (Leung [2]): 
(a) The ‘steady state cracking criterion’ requires that a 

matrix crack can eventually grow under constant applied 
far field uniaxial tensile stress, as the bridging stress in 
the middle of the crack becomes equal to the applied 
stress. To that end, an appropriate balance between 
sufficiently high fiber bridging stress-transfer capacity 
and sufficiently low matrix toughness must exist. 
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Figure 1: Multiple cracking in a 

cementitious composite 



(b) The ‘further cracking criterion’ requires that the matrix cracking strength (far field stress at 
which a throughout matrix crack forms) is lower than the maximum bridging stress (maximum 
stress that bridging fibers can transfer across crack). Consequently, additional parallel cracks 
can form under further loading.  

 By means of upscaling, the bridging relation can be linked to micromechanical parameters of 
fiber, matrix and their interface (Li [3]). The matrix cracking strength depends on the size of initial 
flaws and matrix fracture toughness (e.g. Wu and Li [4]). With help of these relations, the material 
composition can be optimized to satisfy the above criteria as well as workability requirements. 
Initially, researchers mostly focused on the optimization of the fiber-matrix-interface system so as 
to improve the bridging relationship. In a recent work, Wang and Li [5] experimentally 
investigated the possibility of tailoring the matrix cracking strength through controlling the flaw 
size distribution. The study showed that a robust multiple-cracking behavior can be achieved by 
introducing artificial flaws in the form of low-strength particles of appropriate size. 
 In the present paper, we attempt to formulate a theoretical model, which can 
reproduce/predict the phenomena of multiple cracking under uniaxial tension, with a special 
attention to capture the effect of the initial flaw size distribution. The model employs an approach, 
which is in principle similar to that used by Wu and Li [4]. In addition, the proposed model uses 
realistic information on flaw shape and sizes obtained from image analysis of composite sections 
and accounts for scatter of fiber volume fraction among different crack planes. 

2 THE PROCESS OF MULTIPLE CRACKING 
Let us consider a specimen of ECC material, which is exposed to uniform uniaxial tension σ in 
direction x. The specimen’s behavior is initially linearly elastic until the applied load attains the 
level of the first crack strength σfc, at which matrix cracking starts. Due to low matrix toughness, 
the crack propagates almost instantaneously through the specimen in the direction perpendicular to 
loading. However, the crack is bridged by fibers, which ensure that the crack maintains a flat shape 
with opening displacement almost uniform along its area. Furthermore, the crack exhibits a 
hardening response, i.e., increased load is needed to further open the crack. Note that formation of 
‘flat’ cracks and hardening crack response are direct consequences of satisfying Criterion (a). If 
additional loading is applied to the specimen, it causes formation of another matrix crack 
[Criterion (b)]. The whole scenario then repeats, resulting in a set of throughout cracks distributed 
along the loading direction x, as seen in the inset of Figure 1. 
 If the specimen is tested under displacement control, the initial linearly elastic response is 
followed by numerous fluctuations of the measured stress, as it is obvious in the graph in Figure 1. 
This overall behavior results from the process of multiple cracking. Each local peak corresponds to 
formation of a new matrix crack. The stress drop corresponds to the reduction of energy stored in 
the composite when the new crack forms. The gradual stress increase is associated with further 
deformation of the specimen, which consists of elastic stretching of the intact composite between 
cracks and opening/reopening of all multiple cracks. 

3 MODEL OF MULTIPLE CRACKING 
3.1 Cracking criterion 

Most analytical models to date (e.g. Li and Wu [6]) idealized initial flaws as penny-shaped cracks 
bridged by fibers. The cracking criterion was then formulated by comparing the stress intensity 
factor (or J-integral) due to the applied load, reduced by the effect of bridging, to the fracture 
resistance of matrix. However, direct observations of sliced composite specimens reveal that most 
flaws occur in the shape of round cavities – bubbles of entrapped air (Figure 2). Should the flaws 
be idealized as spherical cavities, they would be free of stress singularity and the stress 



concentration factor around each flaw would 
be independent of its size. This, in turn, would 
imply that matrix cracking strength is 
independent of the flaw size, which contradicts 
experimental observations. Furthermore, Wang 
and Li [5] observed sharp cracks propagating 
from the round flaws. Thus, we model the 
flaws as round cavities with wing cracks 
embedded in infinite domain (Figure 2). The 
stress intensity factor (SIF) of such a flaw rapidly increases from 0 (for a round cavity only) to the 
value of SIF of a penny-shaped crack as the ratio of the wing crack length a to the cavity radius r 
increases. Therefore we formulate the cracking criterion in the following form: 
 

  ( ) ( )i i
cr mK rσ π′= , (1) 

 
where m mK K F′ = , Km is the matrix fracture toughness, F is a factor accounting for a flaw shape 
(3-D, presence of wing cracks, etc.), and (i)σcr is the cracking strength associated with crack 
initiated at i-th flaw with radius (i)r. The value of K’m is calibrated from the first cracking strength 
σfc measured in a direct tension test and the radius of the largest flaw observed on the first crack 
plane; then it can be considered as a material characteristic of a given matrix containing flaws of 
similar shape. 

3.2 Bridging stress 

The effect of fiber bridging is represented by bridging stress, which is defined as the sum of forces 
carried by all fibers spanning a crack, divided by the crack area. Employing the micromechanical 
model presented by Li [3], for opening cracks the bridging stress can be related to the crack 
opening displacement (COD) δ through the following relationship: 
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where σ0 is the maximum stress, that can be carried by fiber bridging and δ0 is the COD at the 
maximum bridging stress: 
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Here Ef, Lf, and df are fiber Young’s modulus, length, and diameter, respectively, τ is the fiber-
matrix interface frictional bond strength, g is the snubbing factor, Em is matrix Young’s modulus, 
and Vf is the fiber volume fraction. Note that from Equation (2) we can express δ as a function of 
σb and denote it as: 
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 For cracks that undergo unloading from stress σ * and COD δ * or reloading, we consider the 
elastic behavior: the COD decreases linearly with slope k, i.e.: 
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Figure 2: Intrinsic flaws in a cementitious 

composite 



where k corresponds to the elastic stiffness of the bare portions of bridging fibers. 

3.3 Overall strain 

Assuming that each crack in the uniformly loaded specimen has a uniform width along its area, a 
homogenization procedure allows us to express the overall strain in the loading direction as: 
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where ε int is the strain of an intact composite between cracks, (i)δ is the opening displacement of 
the i-th crack, and p is the number of cracks within gauge length l. 

3.4 Overall stress 

Assuming that all cracks in the uniformly stressed specimen are perpendicular to the loading 
direction and cut throughout the specimen with a uniform COD, the loading stress σ must be 
equilibrated by the bridging stress σ b on each crack (i.e., the stresses have to be equal). The 
overall (average) stress is then also equal to the loading stress. 

3.5 The relationship between overall stress and overall strain – stress fluctuations 

The relationship between overall stress and strain is derived for a composite specimen undergoing 
multiple cracking in a displacement-controlled uniaxial tensile test. Let us consider the state when 
there have been (p – 1) cracks in the specimen, and the p-th crack just forms at stress (p)σ = (p)σcr 
and overall strain (p)ε. The crack forms and opens instantaneously, while the strain (p)ε remains 
constant (the test is displacement controlled). While the new p-th crack opens, the ‘older’ (p – 1) 
cracks are unloaded. At the same time, the applied stress and the bridging stresses of all cracks 
must remain in equilibrium (equal). Thus, the acting stress must drop to level ( )p σ� , which is 
obtained by solving eqn (6), in which we have substituted eqn (5) for unloaded cracks, eqn (4) for 
the new opening crack, and Hooke’s law for the intact composite: 
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where Ec is the overall elastic modulus of the specimen prior to cracking. If the specimen is 
exposed to further extension, the above equation can be used to obtain the relation between overall 
strain and stress in the form of: 
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until the load rebounds to the level of (p)σ, since until this moment, the ‘older’ (p – 1) cracks 
respond to reloading along the same path as to unloading. After the load exceeds the level of (p)σ, 
all the cracks open according to eqn (4). Thus, 
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which can be used until the next crack forms upon satisfaction of the criterion (p+1)σ = (p+1)σcr. 

3.6 Stochastic variables 

Microscopic observations show that the intrinsic matrix flaws (air bubbles) have various sizes 
ranging from tenths of mm to several mm. Also, the artificial flaws usually do not have a perfectly 



round shape and uniform size (although the scatter is less than that of the natural ones). 
Consequently, the flaw size is treated as a random variable within a specimen volume. 
 Equations (3), which define the maximum bridging stress and COD at this stress, were 
derived by spatial averaging of fiber bridging forces over a crack plane. The fiber-scale parameters 
Ef, Lf, df , τ , and g can be then interpreted as averaged values of all fibers bridging a crack plane 
and consequently they can assumed to be the same for all cracks. On the contrary, the fiber volume 
fraction Vf in reality varies between individual crack planes (namely due to material processing in 
fresh state). Consequently Vf is also treated as a random variable. This implies that different values 
of δ0 and σ0 are used for each crack. 

4 DETERMINATION OF STATISTICAL CHARACTERISTICS 
The statistical distribution of flaw size is obtained from 3-D reconstruction of a composite 
microstructure. To this end, images of planar sections of a composite specimen are first processed 
by image analysis program: intersection area of each flaw is determined and the radius of a circle 
with equivalent area is calculated. Note that these are not the desired radii of flaws, since the 
sections almost never cut through the flaw center. Consequently, a 3-D model of the specimen is 
constructed, in which flaws are represented by spheres with variable radius randomly located in 
the specimen volume. The model is intersected by the same number of planes as the physical 
specimen and radii of the flaw intersections are calculated. The statistical distribution of the flaw 
radii used to construct the 3-D model is then iteratively adjusted so as to obtain a close matching 
of the model sectional data to those of the real specimen. It is noted that this crude method will be 
in future work replaced by a more sophisticated optimization-based approach (Cule and Torquato 
[7]). 
 The statistical distribution of fiber volume fraction along the loaded direction of a composite 
specimen can be also obtained through image analysis of planar sections. The procedure is simpler 
than in the case of intrinsic flaws, since Vf can be estimated from the number of intersected fibers 
(Li [3]). 

5 NUMERICAL SIMULATION OF MULTIPLLE CRACKING PROCESS 
The simulation of the multiple cracking process is based on the 3-D reconstruction of a specimen 
microstructure discussed in section 4. Flaws are sorted in a descending order with respect to their 
size and fracture criterion (1) is used to calculate the overall stress at which each flaw is activated 
to form a throughout matrix crack. Consequently, each crack plane is assigned a value of Vf, which 
is generated as a pseudorandom number with appropriate distribution (see section 4). The relations 
provided in section 3 are then used to calculate the overall stress-strain curve for increasing 
number of cracks. The process is terminated when the COD of any of the existing cracks attains 
the value of δ0 corresponding to its Vf; when this condition is satisfied, the hardening capacity of 
the crack has been exhausted and the specimen fails. 
 The above procedure has been applied to simulate the behavior of ECC materials tested by 
Wang and Li [5]. Composite denoted as Mix 1 contained only natural flaws, while in Mix 2 the 
flaw size was controlled by addition of 7% by volume of weak particles. Both materials contained 
the same amount of short PVA fibers (2% by volume). Since sectional images were available only 
for Mix 1, the method described in section 4 was used to determine flaw size distribution only for 
this material. The microstructure of Mix 2 was obtained by adding 7% by volume of extra flaws 
(representing the weak particles) to Mix 1. The weak particles’ radii were assumed to follow a 
normal distribution with mean value of 1.75 mm and standard deviation of 0.2. As intersected 
fibers could not be counted from the available images, Vf was characterized by normal distribution 
with mean value of 0.02 and the standard deviation was assumed to be 0.002 for both materials. 



All remaining parameters were the same for both 
materials. The value of K’m = 14 MPa.mm0.5 was 
calibrated from Mix 1. 
 Figure 3 compares the computed responses of Mix 1 
and Mix 2. The results match fairly well the experimental 
results reported by Wang and Li [5]. In particular, the 
analysis captures the improvement of the composite 
ductility that can be achieved by controlling the flaw size. 

6 CONCLUDING REMARKS 
The presented approach allows prediction of the overall 
stress-strain curve of fiber reinforced cementitious 
composites exhibiting multiple cracking. Though it was 
not discussed in the paper, the model also provides information on actual width of the distributed 
multiple cracks at given overall deformation, which may be important when the material is used 
for crack width control. Since the model accepts micromechanical parameters of the fiber-matrix-
interface system and stochastic characterization of the material microstructure as the input, it can 
be used as a tool for optimization of material composition. 
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Figure 3: Calculated stress-strain 

curves of ECC materials 


