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ABSTRACT 

The paper considers a specific mechanism of crack growth – the crack growth under the action of pair of 
concentrated forced applied at the centres of the cracks. This type of loading could for instance model the 
action of heterogeneous stress field generated by material heterogeneities or residual strain. Cracks under 
such loading grow in a stable manner. If the cracks form self-similar sets then this mechanism of crack 
growth can either maintain or destroy self-similarity. In the first case we call the crack distribution stable, 
otherwise it is unstable with respect to this crack growth mechanism. It was found that if the cracks are 
uniformly distributed and isotropically oriented, their self-similar size distribution is stable. If, however, the 
cracks are all parallel to one plane, such that the cracked material becomes transversal isotropic the crack 
growth destroys self-similarity. It is interesting that the situation drastically changes if the parallel cracks are 
localised in a narrow layer because then the crack growth will maintain self-similarity. This may serve as a 
mechanism of localisation in the process of crack formation. 
 

1. INTRODUCTION 
In the cases when the mechanical behaviour of a material is controlled by internal microstructure 
encompassing a number of scales the assumption of self-similarity in distributions of 
microstructural elements becomes a major simplifying factor in otherwise usually intractable 
problem. In particular, evidence of self-similar distributions of cracks, fractures and fragments is 
found in such materials as concretes, rocks and the Earth’s crust (e.g., Sadovskiy [1], Scholz and 
Aviles [2], Scholz [3], Redner [4], Olding [5], Barton and Zoback [6], Turcotte [7], Gillespie et al. 
[8], Yamamoto et al. [9], Dubois [10]). The appearance of self-similar structures is usually 
attributed to the critical state of the material (e.g., Bak and Tang [11], Chopard and Droz [12]), 
however the particular mechanism of formation of self-similar distributions, particularly 
distributions of cracks and fractures is poorly understood. The most popular approach is to 
consider the fractures as clusters of connected defects (e.g., Sahimi and Goddard [13], Nishiuma et 
al. [14], Chakrabati and Benguigui [15], Mishnaevsky [16]) which near the critical state (i.e. 
percolation threshold) have self-similar distributions. It should however be noted that only in the 
2D picture these structures actually break the material. In real 3-D world the formation of such 
structures does not affect the connectedness of the body.  
 Dyskin [17, 18] proposed a mechanism of developing self-similar distributions of disk-like 
cracks based on crack interaction leading to a self-similar distribution of crack sizes with the 
distribution function proportional to the inverse fourth power of the crack radius. Essential in this 
model is the stable growth of the cracks, which is provided by a special type of loading, viz by a 
couple of concentrated forces applied at the centre of every disk-like crack. That model was only 
developed for isotropic crack orientations. This paper develops this approach further and considers 
systems of parallel cracks.  



 
2. EMERGENCE OF SELF-SIMILAR DISTRIBUTIONS IN SETS OF INTERACTING 

CRACKS DRIVEN BY CONCENTRATED FORCES 
Consider a material with disk-like cracks and suppose that the external static loading is such that 
the cracks being alone would grow in a stable manner (otherwise the first crack that starts its 
unstable growth will break the material). The simplest model for such a growth is loading by a pair 
of equivalent concentrated forces applied to the crack centre (such a loading could for instance 
model the action of heterogeneous stress field generated by material heterogeneities or residual 
strain, [17, 18]). Then the law of growth of a separate crack is given by (e.g., Tada et al, [19]) 
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where KI is the stress intensity factor (SIF), KIc is the fracture toughness of the material, which is 
assumed to be scale independent. 
 Suppose that the cracks are located randomly. Then, even if all cracks were initially of the 
same size and were loaded by exactly the same forces, the interaction will make them grow 
differently such that a certain size distribution of sizes will emerge. The interaction of such cracks 
will be modelled in the asymptotics of large distribution of sizes (Salganik [20]) assuming that: (i) 
cracks of close sizes do not interact directly and; (ii) the interacting cracks are very different in 
size. Then each crack can be considered in an equivalent medium with effective characteristics 
determined by all cracks of smaller sizes. As a result, for isotropic crack distribution the average 
SIF <KI> for such a crack is given by (see [18] for details) 
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where E, ν are the effective Young's modulus, and Poison's ratio, E0, ν0 are the Young's modulus, 
and Poison's ratio of the material, KI

0 is the SIF for the crack without interaction.  
 It is shown in [18] for isotropic crack distributions that as the cracks grow the difference 
between their sizes increases and the distribution tends to a self-similar one: 
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where M is the number of cracks per unit volume, Fmax is the force magnitude at which the 
maximum crack radius becomes infinite, which can be interpreted as the material failure. The 
lower boundary, R0 corresponds to the crack growth “not assisted” by the interaction. 
 The emergence of self-similar distribution prompts the question whether the self-similar 
distributions are stable with respect to the crack growth. This question will be analysed in the 
following sections. 
  

3. MECHANICS OF MATERIALS WITH SELF-SIMILAR CRACK SETS 
Let the crack distribution be self-similar such that there is no characteristic size in the 
microstructure. According to Dyskin [21], such a material should be modelled simultaneously at 
many scales by a continuous set of continua (the H-continua) with the volume element sizes, H 
assuming all values. In this case, all continuum quantities should be also functions of scale, H. 
Then all characteristics of the continua become the power functions of H. Furthermore, all 
tensorial properties should scale isotropically, i.e. all tensorial components should scale with the 
same exponent [21]. In particular, the tensors of elastic moduli, C, and compliances, A, in a 



Cartesian co-ordinate frame x1, x2, x3 scale for the any crack orientations and any material 
anisotropy as 
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for all non-zero components of the prefactors.  
 The prefactors and exponents can be determined from the following system of equations if 
the scaling for the contribution of cracks to the compliances ∆Aijkl= ∆aijklHγ is known (the 
dimension analysis implies that γ=β−1) 
 ijklijkl aa ∆=β  (5) 

This is generally a system of 21 equations for 22 unknowns, aijkl and β. Since the prefactors for 
both compliances and the increments have the same units, one of the compliance prefactors can be 
chosen arbitrarily, while the others and the exponent can be found from (5). 
 For a special case of crack distributions f(R)=wR-4, to which distribution (3) belongs, it is 
shown in [21] that the assumptions of the wide distribution of sizes are satisfied and that the 
differential self-consistent method can be used to determine ∆aijkl.  
 For this case, in line with (2), the average SIF scales as [21] 
 <KI(H)>~H−α (6) 
 In the case of randomly oriented disk-like cracks the Young’s modulus and Poisson’s ratio 
scale as 
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4. STABILITY OF DISTRIBUTED SELF-SIMILAR SETS OF GROWING CRACKS 

We are now in a position to check whether the above distribution of disk-like cracks is stable with 
respect to the mechanism of crack growth described in the previous section. Assuming that each 
homogenisation scale H~R (in the H-continuum only cracks of sizes R>H can be seen) one has 
 23~ −−= αRKK IIc . (8) 
 From here, since the fracture toughness, KIc, is assumed to be scale independent –α-3/2=0. 
Then, according to (7), w=27/32 and the stable crack distribution has the form 
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where V is the total dimensionless concentration of cracks with sizes in the range from Rmin to 
Rmax. This is a self-similar distribution coinciding with (3) given a proper relation between V and 
M. Thus, this type of distribution is stable with respect to the considered mechanism of crack 
growth. 
 Consider now another important case of a single set of parallel cracks with self-similar size 
distribution. Suppose the cracks are perpendicular to the x3 axis. Such a set of cracks does not 
contribute to the components of compliances A1111 and A2222. Therefore, ∆a1111 =0. Then by 
choosing a1111 =1 (recall that one prefactor could be chosen arbitrarily) one has α=β=0. This 
implies that equation (8) has no solutions. Therefore the above mechanism of crack growth will 
destroy the self-similarity of the distribution of parallel cracks. 
 
 



5. STABILITY OF LOCALISED SETS OF PARALLEL CRACKS 
The instability of self-similar distribution of parallel cracks with respect to the crack growth came 
form the fact that the scaling exponent vanishes. This, in its own turn, is a consequence of the fact 
that these cracks do not contribute to some compliances that characterise the transversal isotropic 
H-continua which model the material with one set of parallel cracks. Therefore, in order to find a 
stable arrangement of parallel cracks, one needs to find a situation when the cracks influence all 
essential components of compliances. An obvious candidate for is a localised distribution of 
parallel cracks, i.e. the distribution in which all cracks are concentrated within a thin layer. (In 
order to maintain the self-similarity the layer should be infinitesimally thin; in reality its thickness 
should be smaller than the lower cutoff Rmin.) Such a set of cracks can be modelled as a Winkler 
layer with the normal kn and shear ks stiffnesses defined as σn=kn∆un, τ =ks∆us, where ∆un and ∆us 
are the normal and shear displacement discontinuities over the layer in response to the normal, σn, 
and shear, τ, loads. 
 Under the assumption of self-similar crack distribution, the stiffnesses should scale with the 
same exponent (since they are components of a diagonal tensor relating the stress vector and 
displacement discontinuity vector): 
   (10) αα HkHk sn ~,~
 Suppose the cracks are distributed as follows 
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 Let an H-continuum comprise all cracks of the size up to R~H. Transition to the scale H+dH 
leads to adding new cracks occupying relative area πdΩ=πωR2-ndR. These new cracks increase the 
average stress by the factor of (1-πdΩ)-1, which results in the reduction of effective stiffness by the 
factor of (1-πdΩ). Subsequently dk/k=-πωR2-ndR, where k stands for both normal and shear 
stiffnesses. Obviously, the power law is only possible if n=3: 
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 From here 
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where Ω0 is the total dimensionless concentration of cracks with sizes in the range from Rmin to 
Rmax. Therefore, the self similar distribution of parallel cracks in an infinitesimally thin layer is 
stable with respect of crack growth under the action of concentrated forces. 
 

6. DISCUSSION AND CONCLUSIONS 
We have considered a specific mechanism of crack growth – the crack growth under the action of 
pair of concentrated forced applied at the centre of each crack. Such cracks grow in a stable 
manner. If the cracks form self-similar sets then this mechanism of crack growth can either 
maintain or destroy self-similarity. In the first case we call the crack distribution stable, otherwise 
it is unstable with respect to this crack growth mechanism. It is found that if the cracks are 
uniformly distributed and isotropically oriented, their self-similar size distribution is stable. If 
however the cracks are all parallel to one plane, such that the cracked material becomes transversal 
isotropic the crack growth destroys self-similarity. This implies that self-similar sets of uniformly 
distributed cracks cannot exist, since the self-similarity will not survive any crack growth caused, 
for instance, by residual stresses. It is interesting that the situation drastically changes if the 



parallel cracks are localised in a narrow layer. Then the crack growth will maintain self-similarity. 
An important question arises: could this property serve as a mechanism of localisation in the 
process of crack formation?  
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