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ABSTRACT
The cohesive segments method is briefly described. This method, which uses the partition-of-unity property of
finite element shape functions, allows for the simulation of discontinuous crack growth in a mesh independent
way. The potential of the method in both quasi-static and dynamic simulations is illustrated by two examples.

1 INTRODUCTION
Linear elastic fracture mechanics applies when there is a crack–like flaw in an otherwise linear elastic
solid and the singularity associated with that flaw is characterised by a non-vanishing energy release
rate. For example, classical linear elastic fracture mechanics concepts do not apply for dynamic
crack growth in a brittle solid in the intersonic regime. The fracture and any dissipative processes
must also remain confined to a small region in the vicinity of the crack tip. If these conditions are
not met, linear elastic fracture mechanics concepts do not apply and another fracture framework is
needed.

When the region in which the separation and dissipative process take place is not small compared
to a structural dimension, but any nonlinearity is confined to a surface emanating from a classical
crack tip (i.e. one with a non-vanishing energy release rate), cohesive zone models which were
introduced by Barenblatt [1] and Dugdale [2] can be applied. Subsequently, the cohesive zone ap-
proach was extended by Hillerborg et al. [3] and Needleman [4] to circumstances where: (i) an
initial crack–like flaw need not be present or, if one is present, it need not be associated with a
non-vanishing energy release rate; and (ii) non-linear deformation behaviour (but not separation)
may occur over an extended volume. In this view of cohesive modelling, the continuum is charac-
terised by two constitutive relations: a volumetric relation that relates stress and strain and a cohesive
relation that relates traction to separation across a set of cohesive surfaces. Thus, for a cohesive for-
mulation to apply, whatever fracture mechanism is occurring, it must be appropriate to idealise it as
taking place over a surface of negligible thickness.

When the crack path is known in advance, either from experimental evidence, or because of the
structure of the material (such as in laminated composites), cohesive–zone models have been used
with considerable success. In those cases, the mesh can be constructed such that the crack path a
priori coincides with the element boundaries. The crack itself is modelled by interface elements,
which are equipped with a cohesive constitutive relation that consists of two parts: a finite stiffness
to model a perfect bond prior to cracking and a softening part that describes the cracking behaviour.
Introducing a finite stiffness prior to the onset of cracking changes the compliance of the structure
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Figure 1: Domain crossed by two discontinuities Γd,1 and Γd,2.

and gives rise to deformations in the interface before crack initiation. Furthermore, in dynamic
analyses, it will cause a change in the wave speeds. Although these effects can be limited by choosing
a sufficiently high initial stiffness, other numerical deficiencies remain. For example, depending on
the chosen spatial integration scheme, a high initial stiffness can lead to spurious traction oscillations,
which may cause erroneous crack patterns, e.g. [5].

In many cases however, the trajectory of a crack is not known beforehand and, more important,
crack growth is not a continuous process, e.g. in heterogenous materials such as concrete. Here,
the presence of particles of different sizes and stiffnesses leads to a complex stress field where
new cracks nucleate and existing cracks coalesce. A similar behaviour can be observed in dynamic
fracture. When the crack speed approaches the Rayleigh wave speed of the material, the fracture
process is characterised by intermittent crack propagation and micro-crack nucleation or branching
in the vicinity of the main crack tip.

In order to model such fracture mechanisms, Xu and Needleman [6] have inserted interface
elements equipped with a cohesive–zone model between all continuum elements. Although such
analyses provide much insight, they suffer from a certain mesh bias, since the direction of crack
propagation is not entirely free, but is restricted to interelement boundaries [7].

In principle, most of the numerical problems are overcome by inserting the cohesive zones di-
rectly into the continuum elements by exploiting the partition-of-unity property of finite element
shape functions [8, 9, 10]. Here, cohesive zones can be extended during the simulation, in any di-
rection, irrespective of the structure of the underlying finite element mesh. As a further extension
one can define cohesive segments that can arise at arbitrary locations and in arbitrary directions and
allow for the resolution of complex crack patterns including crack nucleation at multiple locations,
followed by growth and coalescence [11].

2 THE COHESIVE SEGMENTS METHOD
A key feature of the cohesive segments approach is the possible emergence of multiple cohesive
segments in a domain. Consider a domain Ω which contains m discontinuities Γd,j , j = 1, ....,m,
see Figure 1. Each discontinuity splits the domain in two parts, denoted as Ω−j and Ω+

j , such that
Ω−j ∪Ω+

j = Ω. The displacement field can be written as the sum of m+ 1 continuous displacement
fields ū and ũj [12]:

u = ū +

m∑

j=1

HΓd,j ũj (1)

where HΓd,j denotes the Heaviside step function which is equal to 1 when the material point is in
Ω+
j and equals 0 otherwise. Restricting attention to small displacement gradients, the strain field
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Figure 2: (a) A single cohesive segment in a quadrilateral mesh. The segment passes through an
integration point (⊗) where the fracture criterion is violated. The solid nodes contain additional
degrees of freedom that determine the magnitude of the displacement jump. The gray shade denotes
the elements that are influenced by the cohesive segment. (b) A cohesive segment is extended into a
new element (dashed line). The gray nodes contain degrees of freedom that have just been added to
support the extension of the cohesive segment. (c) Interaction of two cohesive segments. Segment A
is extended (dashed line) until it touches segment B. Since this can be regarded as a free edge, there
will be no crack tip for segment A. (d) Two segments are connected (dashed line).

follows by differentiation of (1):

εεε = ∇sū +

m∑

j=1

(
HΓd,j∇sũj + δΓd,j (ũj ⊗ nΓd,j )

s
)

(2)

where δΓd,j denotes the Dirac delta function placed at the jth discontinuity Γd,j and the superscript s
denotes the symmetric part of the tensor. Note that the strain field is unbounded at the discontinuities
Γd,j . Here, the magnitude of the displacement jump is taken as the governing kinematic parameter:

vj = ũ|Γd,j (3)

The equilibrium equations in weak form are obtained by following a standard Bubnov-Galerkin
procedure. These equations can be discretised by using the partition-of-unity property of finite
element shape functions [8] as described in Remmers et al. [11].

Implementation
When the criterion for the initiation of decohesion is met (currently, a principal stress criterion
is used) a cohesive segment is inserted through the integration point. In the applications so far,
its direction has been taken to be orthogonal to the direction of the major principal stress. The
segment is taken to extend through the element to which the integration point belongs and into the
neighbouring elements, see Figure 2(a). The magnitude of the displacement jump is determined
by a set of additional degrees of freedom which are added to all nodes whose support is crossed
by the cohesive segment. The nodes of the element boundary that is touched by one of the two
tips of the cohesive segment are not enhanced in order to ensure a zero opening at these tips [10].
Subsequently, the evolution of the separation of the cohesive segment is governed by a decohesion
constitutive relation. When the criterion for the initiation is met at one of the two tips, the cohesive
segment is extended into a new element, as demonstrated in Figure 2(b). The extension is straight
within the element, but does not necessarily have to be aligned with previous parts of the segment,
so that curved crack paths can be simulated.

Each cohesive segment is supported by its own set of additional degrees of freedom. When two
segments meet within a single element, the nodes that support the element are enhanced twice, once
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Figure 3: (a) Geometry of the double cantilever beam test. (b) Load displacement curve. In the inset,
the final deformation of the specimen is shown (amplification factor 100.0).

for each cohesive segment. In the situation depicted in Figure 2(c), segment A is only extended until
it touches segment B, which can be regarded as a free edge. This implies that there is no crack tip,
so that all four nodes of the element are enhanced. A special case is shown in Figure 2(d). When
two segments approach as shown in this figure, they are simply joined.

Because the crack is not taken as a single entity a priori in the cohesive segments approach, the
method can equally well simulate distributed cracking which frequently occurs in a heterogeneous
solid. Thus, the cohesive segments approach embraces both extremes, distributed cracking with
crack nucleation, growth and eventual coalescence at multiple locations as well as the initiation and
propagation of a single dominant crack without requiring special assumptions. What is needed is to
specify the conditions for crack nucleation and for the crack propagation direction, and a decohesion
relation at the crack.

3 NUMERICAL EXAMPLES
The performance of the cohesive segments method is demonstrated by means of two examples. The
first example is a quasi-static analysis of a combination of fracture mechanisms in a double cantilever
beam, the second example describes the analysis of dynamic shear fracture.

Double cantilever beam
Consider the double cantilever beam with a small notch as shown in Figure 3(a). The beam is
subjected to bending. The two layers of the beam are composed of isotropic linear elastic materials
and have identical elastic properties: Young’s modulus E = 20.0 GPa and Poisson’s ratio ν = 0.2.
The cohesive tensile stress of the material is f lay

t = 2.5 MPa, the work of separation is G lay
c =

40.0 N/m. It is assumed that the fracture mode is purely mode-I. The adhesive that bonds the
two layers is modelled with a mixed mode delamination model with a non-zero compliance prior
to cracking [6] with fracture toughness Gadh

c = 10.0 N/m and ultimate normal and shear traction
tn,max = ts,max = 1.0 MPa.

The specimen is analysed with a mesh having 99×21 elements. The notch is simulated by
removing a single element from the mesh. The interface between the two layers is modelled by a
cohesive segment, which is added to the mesh beforehand. This implies that one part of the element
that is crossed by this segment belongs to the top layer of the double-cantilever beam, the other part
belongs to the bottom layer.
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Figure 4: (a) Geometry and loading conditions for the specimen in the dynamic shear fracture test.
(b) The Position of the crack (bold line) at t = 5.0 ms. The dashed lines are the projections of
straight cracks at angles of 60◦ and 70◦.

The tip displacement u is plotted against the applied load in Figure 3(b). When the applied load
is equal to F ≈ 2.4 N, a crack nucleates at the notch in the top layer. A new cohesive segment is
added to the finite element model. Upon further loading, the crack propagates towards the interface.
At this point the top layer has completely debonded and the interface is now loaded in nearly pure
mode-II. When the shear tractions in the interface exceed the decohesion strength, the two layers
start to debond. The highly distorted elements in the inset of Figure 3(b) contain the displacement
jumps vj that govern the open cracks. The actual deformation of the material modelled by these
elements is of the same order of magnitude as the deformation in the surrounding elements.

Dynamic shear fracture
The dynamic shear failure test is a classical example of fast crack growth in a homogeneous solid
and has been the subject of many studies, e.g. [13, 14]. Under high impact loads, a crack that is
subjected to a mode II load propagates at an angle of approximately 60◦ to 70◦ with respect to the
initial crack.

Various calculations were carried out for the configuration shown in Figure 4(a). In some calcu-
lations numerical instabilities were encountered, while in other calculations there were difficulties
associated with resolving near crack tip fields with the mesh used. These issues are being investi-
gated. Nevertheless, good results were obtained for a specimen that has dimensionsL = 0.003 m and
W = 0.0015 m and has an initial crack with length a = 0.0015 mm. It is made of a homogeneous
material with Young’s modulus 3.24 · 109 N/m2, Poisson’s ratio 0.35 and density ρ = 1190.0 kg/m3.
The corresponding dilatational, shear and Rayleigh wave speeds are cd = 2090 m/s, cs = 1004 m/s
and cR = 938 m/s. The ultimate normal traction of the material is equal to 100.0 · 106 N/m2 and the
fracture toughness is 700 N/m. The lower half of the specimen is subjected to an impulse load which
is modelled as a prescribed velocity with magnitude v0 = 10 m/s and a rise time tr = 0.1µs.

The specimen is modelled with linear quadrilateral elements. In the region around the crack tip,
the mesh is locally refined and the length of the elements is le = 15.0µm. The time increment is set
to ∆t = 1.0 · 10−10 s. At the start of the simulation, the model has 11587 degrees of freedom. In
this specific example, crack nucleation away from the main crack tip is not taken into account.

As can be seen in Figure 4(b), the crack propagates roughly at an angle around 70◦, which is in
agreement with previous observations [13]. The small fluctuations in the path are most likely caused
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by stress waves reflections.

4 CONCLUDING REMARKS

Cohesive–zone models constitute a powerful approach to analyse fracture, in particular for hetero-
geneous materials and for dynamic fracture. The bulk and cohesive constitutive relations together
with appropriate balance laws and boundary (and initial) conditions completely specify the problem.
Fracture, if it takes place, emerges as a natural outcome of the deformation process.

The partition-of-unity property of finite element shape functions enables a natural implementa-
tion of cohesive–zone models, unbiased by the initial mesh design. The formulation can be used
in a wide variety of numerical applications, such as the cohesive segments method, where cohesive
surfaces of a finite size can be defined, which can be placed at arbitrary locations and in arbitrary
directions. The issues related to the numerical stability and the application of the method to discon-
tinuous crack growth in dynamic simulations will be addressed as the development of the method
proceeds.
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