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ABSTRACT

Acoustic emission experiments in paper, a (quasi)-two dimensional disordered material, produce evidence of
criticality, in the language of statistical physics. The energies of events follow a power-law, scale-free probabil-
ity distribution. Two basic setups, usual mode I tensile tests and a nip-in-peel one have been studied. These are
compared with each other, and with the the pertinent theories of slow fracture and crack line propagation.

1 INTRODUCTION
Acoustic emission (AE) is one of the statistical phenomena in fracture, that shows signs of universal
phenomena, such as are encountered in many disguises in statistical physics (Lockner,Petri,Krysac,Guarino
[1, 2]). The essential idea is that transient elastic waves are detected, once they get generated through
the release of elastic energy due to microcracking and (main) crack propagation. The time-series at
a single AE detector can be described by “crackling noise”: silent intervals are separated by AE
events of varying length and amplitude/energy (Bouchaud [3]). Numerous studies have elucidated
the statistical laws that describe AE. In general, these relate to usual mode I or mode III -type loading
conditions, and the common feature is that they exhibit scalefree features. The probability distribu-
tion function (pdf) of event energies is most often of power-law type, P (E) ∼ Eβ with β = 1 . . . 2,
and e.g. the event intervals are most often, similarly, found to obey such fat-tailed pdf’s.

Other “fractal” characteristics relate to the properties of final crack surfaces. It has been dis-
covered that both for 2d and 3d geometries fracture interfaces can be described by self-affine fractals
(Bouchaud [4]). Thus e.g. the mean-square fluctuations w increase with the scale of observation as
w ∼ lχ, with the roughness exponent χ depending on the range of observation and dimensional-
ity, among others. The reasons for scale-invariance are still being debated (Bouchaud, Bouchaud
et al., Räisänen, Hansen and others [4, 5, 6, 7]). In this context, a very clean scenario is pre-
sented by the propagation of an interfacial crack (line) between two three-dimensional plates, of
e.g. plexiglass. Now it is clear that if the crack front exhibits non-trivial fluctuations these could
perhaps be accounted for by a dynamical model for such a line, in the presence of the right kind
of disorder, and with the right kind of interactions (Schmittbuhl, Le Doussal, Rosso; Schmittbuhl,
Alava [8, 9]). However, where as renormalization group calculations and numerical models indi-
cate ζ ∼ 1/3 . . .0.38, the experimental evidence points towards a much more complicated scenario
(Schmittbuhl, Delaplace [10]). The roughness exponent is higher (upto 0.6), and there is clear
evidence of the presence of localized activity, weak oscillations, or avalanches (Målo/y [11]). In
general, theoretical models for statistical fracture as found in the literature do not include more com-
plicated effects than locally varying material properties (strength, elastic modulus) and simplified
load-sharing. They do imply the presence of scale-free dynamics, and in the most simple case of
democratic (global) load-sharing models (fiber bundle ones) (Kloster [12]), these properties can be
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Figure 1: The fractions of AE energy, prior and after to the σc of the stress-strain curve, as a function
of the strain rate in mode I experiments.

defined and measured exactly. In more elaborate systems, like random fuse networks (Herrmann
[13]) which are a scalar analogy of quasi-brittle fracture, these features still persist (e.g. in terms of
a broad P (E) distribution, and the notion of avalanches) (Zapperi [14]).

Here we consider paper as a test case of theories of fracture in the presence of structural ran-
domness. This is of interest since paper is (almost) two-dimensional, among others (Kertész [15]).
In the following, we concentrate on two kinds of experiments (Salminen, 2002; Salminen et al.
[16, 17]). The more recent is based on a “paper peeling”, in which a crack line is forced to propagate
along the sheet plane, thus separating the sheet into two halves. In addition, we consider the usual
mode I fracture, and highlight the scaling by using the strain rate as an extra control parameter.

2 EXPERIMENTAL SETUP
Normal newsprint paper samples (size 100 mm by 100 mm) and laboratory sheets (size 70 mm by 15
mm) were tested in two geometries, in mode I (tensile) and peel-in-nip. The later produces very large
fracture surfaces. Due to the lack of constraints the samples could have out-of-plane deformations in
tensile tests, too, and none of the three fracture modes (I, II, III) is excluded on the microscopic level.
The deformation rates ε̇ varied between 0.1 %/min and 100 %/min. During the experiment we ac-
quire bi-polar acoustic amplitudes simultaneously by piezoelectric sensors, as a function of time. In
most cases the AE apparatus consisted of two transducers, +27 dB amplifiers and continuous 12-bit
data-acquisition. The time-resolution of the measurements was 2.5 µs and the data-acquisition free
of deadtime. We made 20 identical repetitions for statistics. The strain rates are such that the sound
velocity is much faster than the timescales implied by ε̇. The acoustic time-series are reformed of-
fline by thresholding, detection of continuous and coherent oscillatory events, and the calculation of
event energy E, the sum of squared amplitudes within the event. Events are separated by silent (i.e.
amplitude below threshold level) waiting intervals τ . In general the energy of the event is expected
to be proportional both to the damaged area and to the stress in that area.

3 TENSILE FAILURE
Here, one can compare the results with mean-field -like avalanche models (fiber bundles), that would
imply using scaling P (E) ∼ E−(5/2+1)/2 = E−7/4, and simple simulations (Salminen 2002, Mi-
nozzi [16, 18]). One particularly interesting twist is demonstrated in Fig. 1, in which the accumula-
tion of AE energy is divided according to whether it has originated, in a strain-controlled experiment,
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Figure 2: Integrated AE energy vs. strain, for four data sets with the same paper, but with different
strain rates, and a fifth one as a comparison). Notice the exponential increase of the AE energy
accumulation. The rounding-off of the curves signals the regime in which individual samples fail.

before or after the maximum stress σc. Excluding the last data point (for 100 mm/min) the typical
total AE energy does not vary much, but the fractions do very much so. Since, the corresponding
energy scalings imply in general β ∼ 1.2±0.1, we must conclude that the microscopic crack growth
dynamics is independent of the “macroscopic failure point”, or whether catastrophic failure happens
right at σc or beyond that. It is to be emphasized that in this respect it should not be of importance
whether a test is made in stress- or strain-controlled circumstances. The acoustic emission energy
accumulates close to the failure point in an exponential fashion, as depicted in Fig. 2.t There is evi-
dence of a slow increase of a background AE level, which may be sensitive to particular experimental
choices (thresholding etc.). and prior to the maximum stress the accumulation is fast. Attempts to
match the AE integral with a power-law-like divergence (

∫
EAEdt ∼ (σc − σ(t))−a) are unsuc-

cessful, and note that the data exhibits several decades of exponential growth. We may therefore
conclude, that there is no evidence of a “finite-time singularity” (Johansen, Shcherbakov,Guarino
[19, 2]), in the fracture of paper.

4 CRACK LINE PROPAGATION IN A RANDOM ENVIRONMENT
In this case, the fracture dynamics presents steady-state conditions, unlike in a mode I experiment

(say), and thus there are intriguing possiblities for the analysis of e.g. stationary AE timeseries.
The first observation is that the dynamics is again scale-invariant (Salminen et al. [17]), and in both
the AE energy and event-interval pdf’s we see clear observations of fat-tailed, broad characteristics
(Fig. 3). There are three main observations as mode I and in-plane fracture are compared: i) the
β-exponent is much larger for the latter one. This may be attributed perhaps to the tendency, noted
by various theoretical approaches, for the crack dynamics to be very much localized around the
crack line on the expense of bulk damage ahead of it (Zapperi et al., Åström [20]). ii) A similar
difference can be noticed in the waiting time statistics, as well, and iii) most importantly the in-plane
peel test shows clear evidence for an intrinsic scale. Other tests at varying strain rates imply that
the associated ti derives from a fundamental length, closely related to the size of individual fiber-to-
fiber bonds (30-50 µm). These, or the fibers themselves, are the fundamental building blocks of the
structure (Salminen [17]). Finally, given the steady-state conditions the AE time series can be used
to infer different kinds of correlations in the energy release. Theoretically, this is partly uncharted
territory; in statistical physics avalanche models the avalanches (AE events in our language) are
often rather uncorrelated, but can also be described by a broad pdf (eg. for the size or duration).
In Fig. 4 we consider the autocorrelation function of the AE energy signal, after thresholding and
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Figure 3: Top panel: the energy distribution P (E) for two experimental setups. Both exhibit power-
law statistics, but with different exponents, and that the mode I has a much smaller exponent (close
to 1.2). Lower panel: The distribution of time intervals τ for the mode I and in-plane experiments.
Both obey an Omori’s law -like scaling, and the mode I one scales close to P (τ) ∼ τ−1. For the
latter one there is a distinct time-scale (see text).
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Figure 4: The autocorrelation function of released energy from the in-plane experiment, for two
strain rates (10 and 50 mm/min). The data is compared to two artificial timeseries with the same
interval and energy statistics.

dividing into discrete 1 ms timebins. The data is compared to two test sets, obtained by randomly
rearranging the sequence of events and empty intervals. While the noise levels of the two strain
rates are different (the average AE energy per bin increases with the rate), some conclusions can be
drawn. The AE release is correlated upto a timescale that is only weakly dependent on the strain
rate, upto about 0.02 . . . 0.08 s.

5 CONCLUSIONS
In this work, we have searched for universality in the fracture of paper, as both a test of current
theories of statistical fracture and to present some landmarks for further theoretical work. In both
the cases studied clear evidence is found of broad energy distributions. The two main conclusions
have been: the mode I one is far smaller than that resulting from any model as fuse networks or fiber
bundle models; and, in the peeling test a β-exponent is recovered, such that there is again no known
theoretical framework. Meanwhile, the temporal statistics implies scale-invariance if measured for
instance in terms of the event interval statistics. Both mode I and in-plane fracture, using the same
material, imply correlations in the fracture process. In the development of damage prior to maximum
stress in mode I we observe exponential growth of released energy. This is similar to random damage,
or softening due to reduced elastic modulus, which leads to a localized fracture zone in quasi-brittle
materials (ice, concrete etc.) (Van, Delaplace [21]). Unfortunately we do not have enough statistics
to use ”b”-analysis, the possible variation of the β-exponent along the stress-strain curve. This
would also be a stringent test in the statistical physics sense, since many models imply that while
the β-exponent would not change, the cut-off of the pdf would, thus resulting in a net β-exponent
from the combination of these two. On the other hand, the data is clearly in contrast to attempts to
describe the approach of σc in terms of the concept of a “critical point”. In the stationary statistics
correlations can be seen, but it is unclear whether these result from structural correlations - the line
getting “pinned” by stronger interfacial regions - or its intrinsic dynamical response. To summarize,
paper fracture allows to test many simple scenarios of statistical fracture, and still more work could
be done e.g. to consider the detailed properties or shape of the AE events in the various scenarios. A
further prospect is to connect AE and damage dynamics (localization) to the roughness of the final
crack line.
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