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ABSTRACT
This paper deals with the determination of a stress-crack opening (σ-w) curve for the characterization of the
fracture behavior of plain and fiber reinforced concretes. The objective is to provide a constitutive model for
the application of cohesive crack models in the analysis of structural members. Several researchers have
proposed the use of beam tests to obtain the σ-w relation indirectly using inverse analysis. In the strategy
described here, an error function is defined as the integral of the squared differences between a numerically-
or analytically-obtained load-crack opening (P-CMOD) curve and the corresponding curve resulting from
three-point bend tests of notched prismatic specimens. Optimization techniques are employed to find the set
of σ-w parameters that leads to the minimum error. The strategy has been implemented in an object-oriented
code, which is capable of handling any σ-w curve description. The current implementation uses a third party
analytical code for computing the P-CMOD curve corresponding to a trial σ-w set of parameters.
Implementation of new σ-w models or different schemes for computation of P-CMOD curves, e.g., using the
finite element method, is straightforward. Example applications are presented.

1 INTRODUCTION
Simulation of the nonlinear fracture behavior of concrete using a cohesive crack model, such as
that proposed by Hillerborg et al. [1], requires a stress-crack opening relation (σ-w) to represent
the fracture processes that occur ahead of the traction-free crack. In this process zone, cohesive
stresses occur due to bridging, microcracking and aggregate interlock. One experimental approach
for the determination of the σ-w curve is the uniaxial tension test, performed under displacement
control. Due to difficulties with the experimental setup for such tests, many researchers [2-5] have
proposed the use of other simpler test setups, such as the bending test performed on notched
prismatic specimens. These alternative setups, however, do not yield the σ-w curve directly,
requiring inverse analysis to obtain it from the load-crack mouth opening (P-CMOD) or load-
displacement data from the laboratory test. In the inverse analysis procedure, a set of parameters is
provided as a seed for an iterative process, and a numerical or analytical model is used to
determine a corresponding P-CMOD curve, which is compared with the P-CMOD curve obtained
from the laboratory test. Optimization techniques are used to determine the next trial, based on a
predefined error measure, which is the objective function in the process. In this paper, the
computational aspects of the inverse analysis approach and its implementation are discussed
through examples.

2 DETERMINING THE P-CMOD CURVE FOR A GIVEN σσσσ-w CURVE
The fitting of a set of parameters that reproduces the P-CMOD obtained in the laboratory is
performed by an error minimization procedure, as follows: starting with a seed set of parameters
supplied by the user, determining a new trial set based on the error function behavior in the
neighborhood of this set of parameter, and stopping when the minimum is reached.

For each trial set, and for auxiliary sets used to evaluate error function behavior in their
neighborhoods (derivatives), P-CMOD curves have to be generated and compared to the target in



order to produce the corresponding value of the error function ζsqr. Many strategies are possible for
this task. Finite element models, available in academic or commercial packages, generate reliable
solutions, although they are time consuming. Since these computations are performed many times
for the fitting procedure, analytical or quasi-analytical models seem to be more adequate, despite
the expected loss of accuracy. In the example applications presented in this paper, a quasi-
analytical formulation based on the cracked hinge model, developed by Stang et al. [6,7], was
used. This formulation was seen to be very efficient, yielding results that were close to those
obtained from finite element packages, without needing the same computation time.

3 BEHAVIOR OF THE ERROR MEASURE
Given a trial set of parameters, represented by the vector p, the error at a point of the P-CMOD
curve, corresponding to a given crack mouth opening (CMOD), represented by the scalar v, is
defined as:

( ) ( ) ( )vPvPv trial exp,, −= ppδ (1)

( )vPtrial ,p load corresponding to the given CMOD obtained from the numerical or

analytical model applied to a trial set of parameters;
( )vP ,exp p load corresponding to CMOD obtained from experimental P-CMOD data;

v crack mouth opening displacement (CMOD)
The error measure, suitable for the use of optimization algorithms, is given by

( ) ( ) ( )dvvv
v

sqr ∫=
max

0

2, ψδζ pp (2)

Ψ(v) weighting function to give unequal importance to portions of the P-CMOD curve
vmax upper limit in the v interval, selected by the user
For the use of optimization algorithms it would be convenient if the convexity of this

function could be proven. This would lead to the existence and uniqueness of a global minimum,
and its determination would be relatively straightforward with the algorithms available in the
literature or in computational packages. However, a close look at the behavior of a typical problem
with p∈R2 leads to the conclusion that convexity cannot be proven. The surface plot shown in
Figure 1, corresponding to a test on a notched beam specimen subject to a three-point loading,
makes it clear that inflexion may occur far away from the minimum. Furthermore, in the close
neighborhood of the minimum, convergence may become difficult because of the non-smoothness
of the experimental P-CMOD curve. However, if an adequate search direction algorithm and
appropriate tolerances are adopted, a reliable minimum can be found in most cases.

4. HANDLING CURVES IN FIT3PB
P-CMOD curves are handled as a set o n (CMOD, P) pairs. In order to allow simple computation
of error, the experimental P-CMOD curve is recomputed in such a way that its description uses a
given number (n) of pairs, which will be the same in the computation of the corresponding
numerical curve. This strategy enables easy numerical evaluation of the integrals involved in ζsqr.
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Figure 1  Three-dimensional plot of the fitting error ζsqr as a function of ft and Gf

5. DETERMINING THE MINIMUM FROM A TRIAL SET OF σσσσ-w PARAMETERS
The strategy to determine the minimum of the error function ζsqr is based on the following tasks:

a. Starting from a seed trial set of softening parameters, the error ζsqr is computed;
b. If the error ζsqr is within the tolerance, the trial set is the minimum sought, else the next

steps should be followed;
c. First and second partial derivatives of ζsqr are numerically evaluated, resulting in an

estimation of the function gradient and the Hessian matrix;
d. If the Hessian matrix is positive definite, the search direction is that indicated by a

Newton-Raphson scheme, otherwise it is the opposite to that indicated by the gradient;
e. Once the search direction is determined, a line search algorithm is used to find the

minimum in that direction;
f. Repeat steps (a) to (f) until the error is within the predefined tolerance or a maximum

number of steps is reached;
g. Evaluate the quality of the solution by computing the error using the alternative definition

of the error given by

       ( ) ( ) ( ) dvvPdvv
vv

abs ∫∫=
maxmax

0

exp

0

,pp δζ (3)

which is non-dimensional and, for the three point bending test, roughly yields the fraction of the
fracture energy that corresponds to the error in the comparison between the P-CMOD curves
obtained by the analytical or numerical model and the one obtained from the laboratory tests.

6. DETERMINATION OF THE GRADIENT AND THE HESSIAN MATRIX
The strategy to determine partial derivatives of the error function ζsqr in the current implementation
is based on a finite difference scheme. Considering a pair of parameters (pi, pj), and five other
pairs, as indicated in Figure 2, where ∆pi and ∆pj are parameters variations defined by the user, a
quadratic polynomial ( )ji pp ,ζ  is obtained by interpolation to six points defined in the plane pi×pj

in Figure 2. The components of the gradient and the Hessian matrix are evaluated by:
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Figure 2  Scheme for partial differentiation

7. PROCEDURE FOR THE MINIMIZATION OF THE FUNCTION ζζζζsqr

An iterative procedure is followed for the minimization of the ζsqr function, starting with a seed
trial set of parameters, p(0), supplied by the user. In a typical iterative step k, the direction of
decrease d(k) is determined (i.e., search direction) from the partial derivatives of the objective
function at the point p(k). Line search algorithms are then applied to determine the minimum of the
objective function along the line defined by p(k) and d(k). The parameters corresponding to this
minimum are the trial set p(k+1) for the next iteration. The iterative process stops when the
difference between ζsqr(p

(k+1)) and    ζsqr(p
(k+1)) is within a given tolerance, or a given limiting

number of iterations is reached. The alternative error measure ζabs(p
(k+1)) is returned to the user.

The sections to follow describe search direction and line search algorithms (see Luenberger, [8]).

7.1. Determination of the search direction

In an iteration (k), provided the gradient ( )kg of the objective function ζsqr at the current trial point

p(k) is not null, a direction of decrease is given as that opposite to the gradient ( ) ( )kk gd −= . A line

search algorithm applied along the line defined by p(k) and d(k) results in new trial point p(k+1).  The
convergence rate improves significantly if the search direction takes into account the second

partial derivatives, according to a Newton-Raphson scheme: ( ) ( )( ) ( )kkk gHd
1−−= . This strategy,

however, is valid only when the Hessian matrix is positive definite. As this condition is not
satisfied everywhere in the p domain, the positive definiteness of the Hessian matrix is tested to
decide which expression for d(k) should be used.

7.2. Minimization along the search direction

Many algorithms for minimization along a line (i.e., line search) are available in the literature (e. g.
[8]). In general, they are based on function evaluation for three or more points, attempting to
identify the minimum in an interval within a given tolerance. The strategy in the current
implementation combines the Golden Section algorithm with a Parabolic Fitting algorithm.

8. EXAMPLE APPLICATIONS
In the first example application, three softening models (i.e., shapes of the σ-w curve), described in
Figure 3, have been chosen for the plain concrete. The results obtained are given in Figure 4. The
P-CMOD curves clearly show that the linear softening model leads to a poor fit, while both the
Hordijk and bilinear models lead to lower errors, with the latter, with four parameters, yielding the
least error. However, the Hordijk model [9] presented a sufficiently close solution with only two
parameters: the tensile resistance ft and the fracture energy Gf.



Softening models suitable for fiber reinforced concrete, with two, three, four and six
parameters, are plotted in Figure 5. Results from the inverse analysis for these models are given in
Figure 6. The application of the drop-constant model resulted in a poor fit at the peak load.
Conformity with the P-CMOD curve is significantly improved when a slope is introduced in the
model after the peak, even if the tail is constant (e.g. in the sloped-constant model). Further
enhancement is achieved with the bilinear and trilinear models.
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Figure 3  Softening models for plain concrete
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Figure 4  Comparison of softening models and fits for plain concrete
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Figure 5  Softening models for fiber reinforced concrete

9. CONCLUSIONS
An optimization strategy for the determination of the σ-w curve for plain and fiber reinforced
concretes has been presented. The strategy has been implemented in a software program and
applied to both plain and fiber reinforced concretes. The resulting σ-w curves, when used as input
data for computing the P-CMOD curve for notched prismatic beam specimens, lead to a minimum
error when compared to the corresponding experimental curve. A discussion of data manipulation
and quality of the results has been presented, suggesting the adequacy of the proposed strategy.
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Figure 6  Comparison of softening models for fiber reinforced concrete
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