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ABSTRACT 
A critical state two-surface plasticity model is extended to incorporate the behavior of granular soils in the 
post failure regime by using a micropolar framework and incorporating the couple stress terms as well as 
force-stress terms in the yield function.  The proposed formulation provides a unified constitutive model for 
modeling the stress-strain response of sands for a wide range of confining stresses and soil densities at the 
pre-failure and post failure regimes.  

1  INTRODUCTION 
Recent investigations have demonstrated the use of micropolar plasticity in modeling 
post failure response of geomaterials (e.g., Manzari, 2004).  Various geomechanics 
problems ranging from bearing capacity of shallow foundations to stability of slopes and 
retaining walls where shear is the dominant mode of failure have been shown to be 
suitable for the use of micropolar elastoplastic constitutive models.  The entire spectrum 
of the material stress-strain response from very small elastic deformations to the 
nonlinear inelastic response before a peak strength and the post peak response which 
involves strain localization can be modeled with a unified micropolar elastoplastic model 
without facing the usual difficulties encountered in the solution of geomechanics 
problems using standard elastoplastic models.  Despite this capability, micropolar 
plasticity has been applied mainly to classical plasticity models with the exceptions of a 
few hypoplastic constitutive models.  On the other hand, it has long been recognized that 
stress-strain response of soil is best described within a critical state framework where the 
tendency of soil to dilate or contract is determined with respect to its current confining 
pressure and density and possibly its degree of anisotropy.  A recently proposed critical 
state two-surface plasticity model (Manzari and Dafalias, 1997; Dafalias and Manzari, 
2004) has been shown to reproduce the drained and undrained stress-strain responses of 
sands under a wide range of confining stresses and densities in both monotonic and cyclic 
loading regimes.   
Given the versatility of the above mentioned two-surface plasticity model in modeling the 
pre-failure stress-strain behavior and the desirable features of micropolar plasticity in 
modeling post failure response, this paper presents a critical state two-surface micropolar 
plasticity model for sands.  The model consists of a single yield surface that undergoes 
kinematic hardening in the force-stress space.  The plastic potential is indirectly defined 
through a dilatancy coefficient, which is dependent on the current stress state and soil 
density.  Following the premise of bounding surface plasticity, the evolution law for the 
tensor of internal variables describing kinematic hardening is defined in terms of the 
distance between the current stress state and its image on an appropriately defined 



bounding surface (outer surface).  The same technique is used to determine dilatancy 
coefficient as a function of the distance between current stress state and its image on a 
dilatancy surface.  The evolution laws for bounding surface and dilatancy surface are 
defined in such a way that at a critical state, both surfaces collapse onto a unique critical 
state surface.   

The proposed formulation presents a unified constitutive model for modeling the stress-
strain response of sands for a wide range of confining stresses and soil densities at both 
pre-failure and post failure regimes.  

2  MICROPOLAR CONTINUUM 
2.1  Kinematics 
At any material point of the continuum, we consider both a displacement and a rotation 
vector denoted by u and φ, respectively.  The so-called Cosserat micro-rotation R relates 
the current state of a triad of orthonormal directions attached to each material point to its 
initial state (Forest, 2001), i.e. 
 

ij ij ijk kR = δ −Γ φ      (1) 
 

where  is Kronecker delta and  is the permutation tensor.  The associated Cosserat 
deformation  and curvature tensor κ  are written as 
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It is clear that in the absence of rotation vector, φ, classical continuum mechanics is 
recovered. 
 
2.2 Balance laws 
It is assumed that the transfer of interaction between two particles of the continuum 
through a surface element n  (n is the normal to the surface element) occurs by means 
of both a traction vector t and a moment vector, m .  Surface forces and couples are 
represented by the generally non-symmetric force-stress and couple-stress tensors σ , and 
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µ , respectively (Forest 2001). 
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The axioms of balance of linear momentum and moment of momentum require that the 
following equations hold: 
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in which  and f ς  , respectively, represent vectors of body forces and body couples, ρ  is 
mass density  and I denotes the isotropic rotational inertia.  In a specific boundary value 
problem, appropriate additional boundary conditions should be defined to accompany 
Eqs. (3) & (4). 
 

3  CONSTITUTIVE EQUATIONS 
Solution of a boundary value problem that is governed by Eqs. (4), requires proper 
constitutive equations linking the deformation and curvature tensors to the force and 
couple-stresses.  Here we will use an elastoplastic constitutive model that is suitable for 
granular materials.  Details of this constitutive model are outlined in the following 
subsections. 
 
3.1 Additive Decomposition for Small Perturbations 
Here we use the usual additive decomposition of deformation and curvature tensors that 
are applicable in small perturbation regime.  The deformation and curvature tensors are 
decomposed to an elastic part denoted by a superscript “e” and a plastic part indicated by 
a superscript “p”. 
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3.2 Elastic Response 
The general isotropic elastic relationships for a micropolar continuum is given as 
(Nowacki, 1986): 

e e
ij kk ij (ij) c {{iij}

e e
ij kk ij (ij) {ij}

2 2

2 2

σ = λε δ + e

e

µε + µ ε

µ = ακ δ + βκ + γκ

� ��

� ��

�

�    (6). 

Where ε  and ε  respectively denote the symmetric and skew symmetric parts of , 
while  and  represent the symmetric and skew symmetric parts of .  In 
addition to the usual Lame constants, four additional elasticity moduli appear in Eqs. (6).  
To simplify elastic relations used in the later development, we consider: α = β = 0 and  
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where l1 is a characteristic length.  Hence, a simplified form of Eq. (6) is obtained as 
follows:  
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in which the first equation reduces to Hooke’s law for isotropic elasticity in the absence 
of Cosserat rotation (i.e. when strain tensor is symmetric).   
 
In accordance with the critical state two-surface plasticity model for sands (Dafalias and 
Manzari, 2004) the standard Lame parameters λ and µ are obtained from the following 
equations, which indicate the pressure dependence nature of elastic moduli, reflecting a 
key characteristic of geomaterials. 
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where pat is atmospheric pressure, p is mean effective stress, e is current void ratio, ν is 
Poisson’s ratio, and µ0 is a model constant. 
 
3.3 Yield Function 
The yield function is assumed to have the following form: 
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in which  is now defined as 2J�
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with , where  is the deviatoric (force-) stress tensor and α is an 
unsymmetric deviatoric tensor defined as a tensor of internal variables. Parameter m 
indicates the size of the yield surface that is assumed to be constant in the present 
formulation.  Parameters a

ij ij ijs s p= − α� ij ij ijs = σ − δ

1, a2, b1, and b2 may be calculated on the basis of 
micromechanical consideration of particles displacements and rotations in a granular 
medium (Vardoulakis and Sulem, 1995). 
 
3.4 Flow Rule 
A non-associative flow rule, similar to the flow rule proposed in Manzari and Dafalias 
(1997), is adopted as follows: 
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in which Kp is the plastic modulus and 
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Hence we define Rσ and Rµ as follows: 
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Hence, the dilatancy ratio, D, is related to the plastic volumetric strain through the 
following equation: 

p
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in which D is defined as 

d
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whereα  is defined similar to the equations proposed by Manzari and Dafalias (1997) 
and Dafalias and Manzari (2004), i.e. 
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A key feature of Equation (18) is the presence of state parameter, ψ = e - ec, which makes 
dilatancy (D) a function of the distance between current void ratio (e) and the critical 
state void ratio (ec) corresponding to the current mean effective stress (p).  z is the fabric-
dilatancy tensor which is the key element in capturing the response of sand in reverse 
loading (Dafalias and Manzari, 2004).  θ  is a modified Lode angle defined as: 
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where the terms J2s and J3s are the second and third invariant of the symmetric part of 
deviatoric (force-) stress tensor, , are defined as: ijs
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Here again s  denotes the symmetric part of deviatoric stress tensor, , i.e.  (i, j) ijs
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3.5 Hardening law 
The evolution law for the back stress ratio tensor, α, is defined in the same way as 
proposed in Manzari and Dafalias (1997), i.e. 
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with the following relations for b0 and b

θα : 
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where h0, G0, ch and nb are model parameters.  Moreover, we use the relation proposed in 
Dafalias and Manzari (2004) to define the evolution of fabric-dilatancy tensor, z: 
 

p
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where cz and Zmaz are model parameters. 
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