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ABSTRACT 
The use of the weight functions in fracture mechanics appears in the literature in a very increasing 
way in particular in the computation of the stress intensity factor (SIF). The difficulties of 
calculation of this significant parameter, which come from the analytical singularities present in its 
formulation, encourage the use of the methods using weight functions for both their simplicity and 
their effectiveness with respect to the other approximate methods.   
This work consists on  the hybridization of two weight functions developed by Oore & Burns [1] 
and Krasowsky & al.[2] in order to model the elliptical cracks for the computation of the stress 
intensity factor (SIF) in mode I. The idea of hybridization consists in dividing the ellipse into two 
zones, then to use each one of them in the area where it is more efficient. The proportion between 
the two zones is determined by optimization of the relationship between the small one and the 
large axis of the ellipse.  
Compared with the exact solution, the maximum error of the results obtained is of 2.4%, whereas, 
for those of Krasowsky & al.[2] and Oore & Burns[1], the maximum error is 6.3% and 17.4%, 
respectively, and this in the case of an elliptical crack uniformly charged in an infinite body. Our 
approach is tested on another practical example of an internal semi-elliptical crack in tubes.  
In the absence of the exact solutions, the results found by our calculations are in strong correlation 
with those of other authors using various techniques (FEM for  [3]  & WFM for [2]).   
The idea of hybridization thus really demonstrated its effectiveness like its flexibility in the 
computation of SIF for a variety of problems in fracture mechanics. 
 

1- INTRODUCTION 
The development of the weight functions in fracture mechanics started with the work of Bueckner 
[4] in 1970, based on the formulation by the Green’s function, for a semi-infinite crack, in an 
infinite medium.   
The investigation in the weight functions on the one hand and the evaluation of the energy balance 
formula of Rice [5] on the other hand, allowed the extension of the use of the weight functions by 
several authors such as Oore & Burns [1] and Bortmann & Al. [6]. In 1986, Gao & Rice [7] 
introduced the study of the stability of the fictitiously disturbed rectilinear form from which results 
the values of SIF along the crack front. Other investigations related especially to the fissure shape 
(ellipse, half of ellipse, quarter of ellipse, rectangle. . .), to the mode of rupture (mode I, II, III or 
mixed), and to the large domain of application (elastoplastic, elastodynamic, thermoelastic. . .), 
consequently succeeded. Among those works, one can chronologically mention,  Fett & al.[8] 
(1989), Vainshtok & al.[9] (1990), Dominguez & al.[10] (1992), Rooke & al.[11] (1994), Orynyak 
& al.[12] (1995), Zheng & al.[13] (1997), Kiciak & al.[14] (1998), Pommier & al.[15] (1999), 
Krasowsky & al.[2] (1999), Hachi & al.[16] (2003) and Christopher & al.[17] (2004). The 
principle of the weight function technique consists in employing one or more known solutions 
(known as of reference) of a particular case in order to find the solution for the general case. The 
reference solution generally comes from the analytical results (exact). But in some cases, the 
absence of such results obliges the authors, such as [12], [13], [14], [15] and [17], to use 
approximate solutions which could be the existing weight functions. The solution of the SIF in 
mode I using the weight function technique is given by the general form [12]: 
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Where QIK ′ is the stress intensity factor in mode I at the (Q')  point  of the crack front. QQW ′ is the 
weight function related to the problem, and defined as QIK ′  which is generated by a unit 
concentrated and symmetrical force applied to the arbitrary Q point of the crack, and q(Q) is the 
applied load at the Q point .  

 
2- PRESENTATION OF THE HYBRIDIZATION TECHNIQUE 

Our study is based on the hybridization of two weight functions deduced by the formulation of the 
Green’s function. The first one is developed by Oore & Burns [1] to model any closed shape of a 
crack in an infinite body, including the elliptical cracks. Its expression is as follows:          
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The second one is developed by Krasowski & Al. [2] to model elliptical cracks in an infinite body. 
Its expression is as follows:    
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with r  and  ϕ are the polar coordinates of an arbitrary point  Q. QQl ′  is the distance between the 

(Q') point  and the arbitrary Q point. )(Γ  is the curve of the ellipse (the crack front), and ρQ is the 
distance between the Q  point  and the elementary segment dΓ.    
With )cos(sin)cos(sin)( 222242 θαθθαθθ ++=∏  and α=a/b. 
The principle of hybridization is to divide the elliptical crack into two zones, an internal zone I and 
an external zone II (see figure 1), then to use each of the two weight functions in the area where it 
is more efficient.  
The weight function of the eqn (3) is intended exclusively for the cracks of elliptical form. 
Nevertheless, it presents an additional singularity (1-r/R) -1/2 compared to the eqn (2). This makes 
the eqn (3) less efficient in the vicinity of the crack front )( Rr → . This argument leads us to 
choose the weight function (3) for the elliptical zone I, and the weight function (2) for the external 
zone II, where the singularity (1-r/R) -1/2 is very strong.  

Figure 1 Subdivision of the elliptical crack in two zones.
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Figure 2 Discretization of the fontour and the surface of the crack.



The hybridization verifies well the two geometrical limits of an elliptical crack  0→α   
and 1→α , as long as the two functions (2) and (3) satisfy the two following conditions:  
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Is the weight function of a penny-shaped crack in an infinite body [18].  
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Is the weight function of a straight line crack in a semi-infinite body [2].  d is the shortest 
distance between the crack front and the arbitrary point  Q.  
The adequate proportion between the two zones is established by the optimization of the ratio α  
which allows us to conclude the following: the smaller is α, the larger is zone I and the opposite is 
true. Thus, we adopted the following convention :  

)3(1/ 2 eqnofWWRr QQQQ ′′ =→−≤ α and )2(1/ 2 eqnofWWRr QQQQ ′′ =→−> α      (6) 
 

2. NUMERICAL PROCEDURE, MESHING AND SINGULARITIES 
The solution in eqn (1) includes two integrals, a surface integral and a contour integral.  
2.1 The surface integral 
A treatment technique of singularity 21 QQl ′  in the eqn (1) is employed efficiently by Krasowsky & 
al.[2]. It consists in surrounding the (Q’) point by a small half-circle of R0 radius on which the 
integral is evaluated analytically using eqn (5):  
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 The SIF will be in this case: S
I
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I

S
I KKK ′′′ += ,  S is the surface of the ellipse, S ′ is the surface of 

the half circle and S ′′ is the remaining surface. To minimize the error generated by the curvature in 
(Q'), one takes:       ( ) ( )aQRR i ),(min20/1~30/10 ′=                 (8)  
Ri is the radius of curvature of the crack front.  
The meshing of )(S ′′  is generated by drawing concentric half-circles of (Q') center and R0, r0,  
r1,r2, r3, ...  radius which progressively increases then by draying half-lines of (Q')  origin  dividing 
the half-plane of the ellipse into nj portions, approximately 60 (see figure 2). The integral on )(S ′′  
will be calculated according to the meshing as shown in figure 2 by the ordinary numerical 
algorithms, such as the Gauss’s algorithm.  
2.2 The contour integral 
When Q is very close to the crack front, the integral [ ]∫

Γ

Γ 2)( Qd ρ  becomes singular and its 

numerical calculation becomes delicate. To deal with this singularity we first ignore a very narrow 
band near the contour of thickness ∆, where aγ=∆  and γ = 1/300, as shown in figure 1. The 

effective ellipse surface becomes:    ( ) ( ) ( )222 )(/1// ϕRaybx ∆−≤+                      (9) 
To consider a thickness  ∆ as a variable[2] makes the automatic meshing very complex without 
gaining in the exactitude of calculation. The error is approximately estimated as 
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respectively. At any rate, the shortest distance between two successive arcs of circles must not be 
lower than the thickness ∆. Therefore, we must check the expression below:  
 00min1 )( Rrrr ii −=−=∆ +                 (10)  
and with the combination of the eqn (8), will give the progression of the ri radius as follows:  
 ( ) ( ) 10/1~15/10001 ≈−=−= + RRrrrr iiiν              (11)  
The numerical calculation of the contour integral requires the discretization of the crack front (Γ) 
with a finite number of points, delimiting straight segments of length dΓ (figure2). The error of 
linearization of dΓ is obtained by the use of  Taylor’s series expansion of ( )2sin ψd  in the 

vicinity of zero:    ( ) 24)2/(24/)(/)( 22 Ndwww πψε ≈=−= ))               (12)  
N is the number of points on the quarter of contour (Γ), dψ: is the angular opening of the dΓ. To 
uniformize the error ε on all the contour (Γ), the opening dψ decreases with the reduction in the 
curvature radius. The angle ψ  of the ith point, must satisfy the following expression:   















 −=

N
ii

22
tanarctan)( 2 ππαψ                            (13)   

To insure that the error ε remains weak, Krasowsky & Al. [2] imposed the following condition 
(figure 2):     2.01.0:)(1 ÷=≤∆ µµϕ withl             (14)  
When coupling this condition with eqns (10), (11) and (12) we obtain the lower limit of N:   

( )µγπ 82≥N                  (15)  
As long as the Q point  is far from ( Γ), the integral could be transformed into the summation:  
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When Q is very close to the kth segment, the integral must analytically be computed on this 
segment in order to avoid any risk of singularity. It is equal to (figure 2):  
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The eqn (16) thus becomes:  ∑∫∑∫
+Γ

−

=Γ

Γ
++

Γ
=

Γ N

k QLd Q

k

i QLQ ii

ddwdd 4

1
22

1

1
22)( ρρρρ

          (18)  

In order to justify the need for the use of the eqn (17), let us evaluate the error made by the eqn 
(16) when Q is located on the border of the surface defined by the eqn (9). Let’s for example, take 
the point L (figure 2) to be in the middle of dΓ (t1=-t2). For ( ) µγπ 82/ aNad ==Γ and d = ∆= 
aγ, the integrals calculated by the eqn (16) and the eqn (17) are: 
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The error is obviously enormous (more than 600%!!!). 
 

3. APPLICATIONS AND RESULTS 
3.1 Elliptical crack in an infinite body   
A computer code, with graphic visualization of the meshing, named HWFun is established (figure 
3). We calculate thus, the adimensional stress intensity factor ( ))()( 4/1 θπ Π= akEKK II , E(k) is 

the complete elliptical integral of the second kind where 21 α−=k  for an elliptical crack in an 



infinite body subjected to a uniform unit loading. The computation is carried out for various values 
of the α ratio and for various values of the reduced angle ( )αθθθ /)tan(arctan, =with . The 
obtained results are compared with those of [1] and [2] and with the exact solution as well.  
According to table I, the hybridization undoubtedly shows a clear improvement of the results 
compared to those of [1] and [2], and this for various values of  α and θ . The maximum error of 
the results obtained is 2.4%, whereas, for those of Krasowsky & al.[2] and Oore & Burns[1], the 
maximum error is 6.3% and 17.4% respectively.  

Chargement uniforme q(Q) = 1 
α °θ  

IK (exacte) IK HWFun IK [2]  IK [1] 

1.0 

0. 
30. 
60. 
90. 

1.00000 
1.00000 
1.00000 
1.00000 

0.99761 
0.99777 
0.99780 
0.99778 

1.00035 
1.00035 
1.00035 
1.00035 

0.99761 
0.99777 
0.99780 
0.99778 

0.8 

0. 
30. 
60. 
90. 

1.00000 
1.00000 
1.00000 
1.00000 

1.00690 
0.99934 
0.99147 
0.99090 

0.98523 
0.99170 
1.00573 
1.01184 

1.01049 
1.00133 
0.98992 
0.98732 

0.6 

0. 
30. 
60. 
90. 

1.00000 
1.00000 
1.00000 
1.00000 

1.00657 
0.99166 
0.98845 
0.99891 

0.96532 
0.98550 
1.00985 
1.01390 

1.03307 
1.00562 
0.97917 
0.97695 

0.4 

0. 
30. 
60. 
90. 

1.00000 
1.00000 
1.00000 
1.00000 

0.99556 
0.97587 
0.99077 
1.00858 

0.94460 
0.98180 
1.00540 
1.02053 

1.07646 
1.00893 
0.96820 
0.96726 

0.2 

0. 
30. 
60. 
90. 

1.00000 
1.00000 
1.00000 
1.00000 

0.99070 
0.98544 
0.98421 
0.99515 

0.93730 
0.99690 
1.00400 
1.00400 

1.17447 
1.00934 
0.96464 
0.96143 

0.1 

0. 
30. 
60. 
90. 

1.00000 
1.00000 
1.00000 
1.00000 

1.00270 
0.99945 
0.98808 
0.99726 

- 
- 
- 
- 

- 
- 
- 
- 

Tableau I Adimensional SIF for elliptical crack infinite body. 
α = 1.0 α = 0.4 

i °θ  
IK FEM[3] IK HWFun IK [2] IK FEM[3] IK HWFun IK [2] 

0 0. 
90. 

1.2190 
1.0500 

- 
- 

- 
- 

1.4800 
1.2170 

- 
- 

- 
- 

1 0. 
90. 

0.2210 
0.7290 

0.2368 
0.7330 

0.2090 
0.7360 

0.2780 
0.7230 

0.2689 
0.7160 

0.2500 
0.7120 

2 0. 
90. 

0.0850 
0.5960 

0.0910 
0.6068 

0.0830 
0.6120 

0.1090 
0.5490 

0.0983 
0.5473 

0.0910 
0.5550 

3 0. 
90. 

0.0440 
0.5150 

0.0456 
0.5340 

0.0430 
0.5380 

0.0570 
0.4560 

0.0474 
0.4608 

0.0450 
0.4700 

Tableau II Adimensional SIF pour semi-elliptical surface crack in tube 
3.2 Internal semi-elliptical surface crack in tube  
The theory of the thick tubes (Lamé’s theory) shows that the longitudinal cracks located on the 
internal face of the tube are most dangerous. For this situation, we test our approach of 
hybridization, via the "Point Weight Function Method" (PWFM)[12]. The test is made on tubes of  
e/Rint = 0.1, where e is  the thickness of tube and Rint is its internal raduis, for values of α=1.0  and  
α=0.4. The loading inside the crack has the form p = (y/a) i with { }3,2,1∈i . The reference 
solution[12] is for p = (y/a) 0  = 1.  The results found by our computer code HWFun for θ = 0° and 
θ = 90° are grouped in table II  along with those of [3] and [2]. Those results prove the utility and 

Figure 3 Interface of HWFun Computer code 



the efficiency of our approach. Indeed, our results are in strong correlation with those of the 
references [3] and [2]. 

CONCLUSION 
For elastic and homogeneous bodies, a modelling of the elliptical and semi-elliptical cracks for the 
determination of the stress intensity factor in mode I is carried out. This is obtained by 
hybridization of the two weight functions developed by [1] and [2]. The results obtained show a 
clear reduction in the error. Tested on two practical applications, the present approach 
demonstrates its robustness as well as its reliability. 
NB: This work is conducted in collaboration with LEMTA (France) under N° 170A/178F. 
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