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ABSTRACT 
 
Construction material’s fractures are due to various imperfections.  In a real material there are different types of micro-
imperfections. They form an intricate potential relief, which  moves in space of material under random fatigue loading [1-3]. As a 
result material becomes more harder or more looser. The physical model of how it occurs is the main object of this poster.  We 
have found the common law ruled the migration of complex of defects and  used the full orthonormal set of functions {ϕn,1} which 
are the state functions of the operator of “age” [4]. It gives us opportunity to create the new way of fatigue damage analysis of 
construction materials. 
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INTRODUCTION  
 
The damage of construction material (CM) units which undergo repetitive or random loads relates to 
fatigue. But up to recent time neither a quantitative model of the initial stage of material fatigue damage nor 
reliable sensors to record it have been developed. It is connected with the fact that damage is not formed by 
a single defect but a complex of defects which are generated by random loads, migrate and gather in 
material of construction forming unordered structures preceding the damage. The duration of process, 
measured by the number N – cycles of loading (when the forming of cracks is held and the 1st stage of their 
growth is realized) is compared with the duration of processes on the second stage (the growth of 
macroscopic cracks ).The features of structure of polycrystal alloys are reflected on the structures of their 
potential reliefs that are originated by both a residual deformation and an imposed fatigue deformation. In 
local regions of polycrystal material (PM) which undergoes fatigue loads a wide spectrum of strongly exited 
states arises [3]. These states can not be described by traditional methods of a perturbation theory. With the 
help of mechanics methods of damage one can study only the growth of macroscopic cracks (second stage) 
using empirical – formula dependencies describing the growth of a crack. 

Contrary to the traditional methods of damage mechanics we use both the methods of theory of 
chaos and one dimensional time series that are formed by suitable experimental data [3,4]. It permits us to 
model the features of structure of potential relief of a construction material (CM) and to study its 
transformation under imposed both the selected single deformation and a fatigue in limit cycle regime. 
Objects under study are Aluminum alloy’s samples with the SEs rigidly installed on them. The same 
spectrum of deformation imposed on both of them.  



Aluminum alloy’s samples. Brittle and hard inter-metal combinations originate in Aluminum alloys. The 
fastness of aluminum alloys ( for example, AlCuMg) are raised after its quenching. Selected alloys of 
Aluminum consist of various  types of grains:  Al2Cu – in Al&Cu alloy ; Al3Fe – in Al&Fe alloy; Mg2Si,  
MgZn2  and Cu2NiAl7  in multi-compound alloys of Aluminum. These hard fine grains, taking place in a 
relative soft base material, implement the high resistance to wear of a material. The plastic CMs possess  
ample types of local structures which readily rearranged to each other at the local zones. Whereas a brittle 
CMs possess only a single local structure. A lattice can not be rearranged under cycles loading so there is a 
cracking process. As an example, pure NiTi  possess  closely adjacent B2 structure and  B19 structure which  
readily rearranged  to each other at the local zones. As a result  pure NiTi is perfect plasticity material. But 
NiTi<Fe> becomes a brittle material possessing very stable B2 structure. Below we will present the 
experimental way of  describing  these alloys. The various impurities in Aluminum implement the various 
resistance to fatigue of an Aluminum alloy’s samples.  The same situation one has in heterogeneous 
materials, that are used to form the sensitive elements (SEs)  for fatigue gages [1]. Further we will also deal 
with the fatigue features of a SEs, which have a various impurities. 
The SE has small weight (no more than 5g) and either 3D or film geometry. They are produced either by 
the method of powder metallurgy (cold pressing with the subsequent agglomeration in a quartz ampoule) or 
by thermal vacuum evaporation of the charge onto the polyamide support. The charge consists of a finely 
dispersed mixture of various initial components, e.g., a mixture of granular Bi2-xTe3+x and Sb2-yTe3+y with 
carbonyl iron. The fatigue processes in the selected SEs as well as in Aluminum alloys are sensitive to vary 
impurities and are similar to each other. It gives one the opportunity to develop different type of the SEs for 
adaptive forecast of fatigue damage of the CMs, subjected to random loads.  
Simple model of SE . Resistance, Reff, of SE  is simulated  by lattice at the corners of  which  randomly 
located resistance - ri  ( i = 1,2,3,..., K ; K - total number of grains [ or  clusters ] of SEs).  ri is the  
resistance of the grains of the SEs randomly connected with neighboring grains. In that model lattice  one 
may find a simple module in Fig.1  Model lattice consists of L modules, of this kind , each having   index - 
k, ( k = 1,2,...., L). At equilibrium state the effective resistance R [a-b]  =    Reff  of such module is  
independent  on  the  value  of  resistance r 5 = R[γ-δ], intervened between γ and δ points (Fig.1). The  
electric  balance  is  disturbed  under loading cycle (irreversible) of deformation. So, R[a-b]  varies 
according to quantity of resistance  r5 = R[γ-δ].  It is the simplest model of high sensitivity  of SEs [1]. 
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Our  aims are  to represent both the quantitative model of initial stage of materials’ fatigue   and the new 
way of fatigue damage analysis of construction materials  by using SEs .  
The ways of realization.  Effective rheological output parameters ( Jeff  and ηeff or Q -1

eff  - coefficient of  
nonlinear internal friction ) of  a real construction beam are also modeled by lattice in the knots of which  
rheological elements – elasticity ( Jk, k = 1,2,…,Kcm; Kcm – the total number of granules [or clusters] of CM)  
and /or viscosity ( ηk ) are randomly located. Jk  and ηk – are elasticity and viscosity of CM granules which 
are randomly connected with neighboring granules [3]. 
 Real CM has an intricate potential relief. So in it there are couples of points (balanced points) with 
identical potential.  Their  space function of  distribution f n (x, y, z) can be presented by the complete 
orthonormal series of functions ( { ϕ ν , 1 } ; -∞ < ν < +∞ ), which obey the baker ( B ) transformation [3,4]. 
After the loads being imposed some of balanced points migrate in the CM space. Their space function of 
distribution f n also obeys baker transformation ( See Fig. 3a, 3b, 3c). It gives the possibility to determine 
common law controlling the migration of defects complex.  

Ample grains do not take part in fatigue process of  both  a polycrystal CM and a SE.  Along with 
growth of the number of strongly deformed grains in polycrystal CM  as well as in  SE there are also  an 
ample grains possess their original state. The simple model (See Fig.2) describes these situations is given in 
[3]. There is also next sufficient conclusion  :  When random deformation process taking place at regular 
(unit) intervals of time - τ,  the CM’s and the SE’s responses  at  both    a   fast  (  τ <<  τc (SE) ) and a slow 

Figure 1. Reff  =  R (a-b)  - resistance  of  module   is  measured  by use a  and b
 points. For equilibrium situation electric potential in γ  and δ  points 
are equal (balanced points); so R(a-b) becomes independent on the value of
resistance r5. It is valid also if  r5 =0. ( Electrical  Wheatstone bridge). 



(τ > τc (CM) )  loads can be found by  using  distribution function  fn (x, y, z; τ).   Their distribution functions 
fn(x, y, z; τ) can be expanded to the series by   full orthonormal set of functions {ϕν,1}[3,4] . {ϕν,1} are 
eigenfunctions of the operator of “age” is, by definition, a self – adjoint operator T [4] : T ϕν  =  ν * ϕν , ν  
= 0, ±1, ±2,......, ± ∞. {ϕν,1} also  suit to baker’s transformation (B). It gives one the opportunity to simulate  
a fatigue process in both the CMs and SEs. And it is  the main reason  why  for all kinds of imposed 
deformation (extension-compression; bending variations with different coefficients of asymmetry; various 
spectra of imposed deformation), at which the output parameters (electric resistance Rn for SE and internal 
friction Qn for CM)   of  materials are recorded in equal time  ( τ ) intervals,  the next recurrent relations  
take place:  
 

Rn+1[σ] = On*Rn[σ] = Bn*Rn + (1-Bn)*Mn  ;                                                     (1)  
 

   Q -1n+1[σ] = On*Q -1n[σ] = bn*Q -1n + (1-bn)*mn  .                                                      (1a)  
 
Here: Rn is the electric resistance of SE measured under the same state of the environment;  n is the ordinal 
number of measurement ( n = 1,2,3, ...,  g); g is the maximum number of the measurement  performed; On  
is the loading operator transferring the SE resistance from Rn-th state to Rn+1 -th state ; σ is a complicated  
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ameter to characterize the type of im
 of the types: 
Fig. 3a. Ne - original  equilibrium points are arbitrary located at a SE’  space.
Ne = 10; N1 = 15; N2 = 15; N1 – compressible subset (contains active module –
R*

20 ); N2 -expandable subset (contains passive module – R*
10 ) 

 
Fig.3b. SE’s state after 1 baker transformation: Ne = 10; N1 = 15; N2 = 15; 
 
Fig.3c. SE’s state after 8 baker transformations: Ne = 10; N1 = 15; N2 = 15; 
 
Fig.3d SE’s Reff  versus  number n discrete deformation process taking place at
regular intervals of time - τ. .           Simple mode of  loading. Reff = Rν - is
computer simulated:1) R1,0 = 120 Ohm ; R2,0 = 40 Ohm; 
   2)  R1,0 = 200 Ohm ; R2,0 = 40 Ohm 
posed deformation ; the “time se
       
Fig.2. One port network resistance Reff  =  R (A-B)  

Some  of grains do not take part in Reff    
performance. ∆R(σ ,N) = Reff (σ ,N ) - Reff (σ ,0) ; 
                     L                                       L 
 ∆R(σ ,N)  = ∑ [ gk * ∆Rk (σ ,N) ] ;      ∑ gk = 1.
       k=1                                    k=1  
 
I) Equilibrium    situation -  active  module :     

R (A-B1) ≡ R*20 ; 
II) Non equilibrium situation –passive module:     

 R (A-B1) ≡ R*10 >  R*20   
ries”, composed of experimental 



R1 , R2 , ... , Rn-1 , Rn , R n+1 , .... , Rg ;                                                             (2) 
Q –1

1 , Q -12 , ... , Q -1n-1 , Q -1n , Q -1 n+1 , .... , Q -1g .                                                      (2a) 
 
By using the Grassbereger and Procaccia [ 6] procedure, efficient phase dimensionalities Kg of the time 
series (2) is calculated.   Kg is integer and, in general, depends on the magnitude of the chosen interval ( τ ). 
 Taking into account the numerical value of  Kg , formulas (1) for Rn, and using formulas of 
regression, we can find the dependence of parameters Bn  and  Mn on n*τ   (n > K g > 2 ). 
The relationships 
   Bn = Bn-1 = Bn-2 = ... = Bn - Kg+1  ;    and      Mn  =  Mn-1  =  Mn-2  = ...  =  Mn-Kg+1      (3) 
 
take place. As a result Rn+1  can be forecasted from previous values of Rn   (2)   ( See Fig.4, Fig.6). 
The same procedure can be used to find b n , m n , and  to forecast Q-1

 n+1 having  time series (2a) (See Fig.8) 
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Fig. 5 Internal friction of alloy’s sample   
      Q-1  versus on imposed deformation ε. 
1– After imposed 500 cycles of  25 kg/mm 2 load  
2 - After imposed 104 cycles of 25 kg/mm2  load 

  Loads
Ohm

0

0

0

0

0

0.0 0.4 0.8 1.2

ax = 2*E-3)

 350th cycles

102 Q-1 
           .
    11.4.
 
    11.3.
 
    11.2.
 
    11.1.
 
    11.0.
 
           .
           0
  

 

Fig.6  SE resistance  [ (Rn - Ro )/ Ro] and
total acoustic emission  Nsum  of  the
D-16T spesimen versus number of cycles N
of the imposed deformation  corresponding
to a 25 kg/ mm2 load. The asymmetry
coefficient is unity (m =1). 
Fig.4 Irreversible random
(TU-154B wing spectrum)
deformation r-Y.  Here Y is
number of plane landing;  
r (Y) =( RY,eff – R0,eff )/ R0,eff 
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Fig 7. SE’s resistance Reff versus on imposed defor-
mation ε, after imposed 350 cycles of fatigue loads,
the single fast cycle is imposed. The Reff - ε curve 
was automatically recorded within this fast cycle. 
 Fig. 8 Internal friction of alloy’s sample Q-1  versus
on number N cycles of the imposed deformation
corresponding to both 32 kg/mm2 (1) and 26 kg/ mm2

(2)  loads. The asymmetry coefficient is unity (m =1).



To  gain a greater insight into why the Reff - N dependence has  the  form  given  in  Fig.4,6  assume  
that  for every module (Fig.1) 
          ⌠    G(σ ,m)*N   if   N ≤  Nk 
       ∆Rk (σ, N)  =                                                             (4) 
               G(σ ,m)*Nk  if   N ≥  Nk 
 
takes place; Nk varies in value. A scale factor - G(σ,m)  is the  same  for   each module  of  the  SE   and  
depend on  the amplitude - σ and degree  of  asymmetry - m  of  the imposed  regular   cyclic deformation. 
       Each  module ( Fig.2 )  will  be able to contribute to the ∆Reff  in accordance with statistic gk [7]: 
                L                                       L 
  ∆R(σ ,N)  = ∑ [ gk * ∆Rk (σ ,N) ] ;      ∑ gk = 1.               (5) 
                              k=1                                    k=1 
∆Rk(σ,m; N) - variation of resistance of a k-th module depend  on the   amplitude  - σ    and   degree   of   
asymmetry - m  of the superimposed regular cyclic  deformation. N is the number of cycles.         For the 
sake of convenience,  assume that  ∆Rmax = Mg (σ ,m) and  
 
 Zk  = G(σ,m)*Nk / Mg (σ,m)   , ( k = 1,2,3,..., L).                     (6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    a)     

Fig. 9 . The state of  SM-film  after be loaded : a) 250 and b) 1000 cycle
(  σ eff  = 17 Kg/mm2 );    σ a  = 7.42  Kg/mm2  ; σ m = 12.04 K
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      Fig.10.  The state of  SM-film  after be loaded 800  cycles of                       Fig.
                     arbitrary   deformation ( σ eff  = 20.02 Kg/mm2  ) 
   
Zk  and  gk can be found from experimental data, Fig.4 (or Fig
                           L 
∆R(N)  = G*N*  ∑ gk =  G*N,                        
                         k=1 
∆R(N)  = G*N1*g1 + G*N*{1-g1}                         
  b)  
s of    regular deformation :      
g/mm2 
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11 . The increase of entropy  (S )  versus  ( N ) regular cycles. 

.6, or Fig 8).  Proceed as follows: 

         0  ≤ N ≤  N1 

        N1  ≤ N ≤  N2 



 
∆R(N)  = G*N1*g1 + G*N2*g2 + G*N*{1-g1 –g2};       N2  ≤ N ≤ N3 
.................................................................                (7) 
                    L 
∆R(N)  = G*∑ [Nk*gk ]                                           NL ≤ N               
                   k=1 
Notice that  N1 < N2 < N3 <.....< NL   and    N   vary    in  each of interval  of   [Nk ,N k+1]. Let us take a 
derivative of ∆R (N) with respect to  N  in each of (7) equalities. Then each subsequent equality can be 
subtracted from  the preceding one. As a result one find all quantities of gk, Nk, as well as   G(σ,m)    and 
Mg(σ.m). Figure 9 (a,b) and Fig.10 present the states of   SE  - film after   both various number  of cycles  
and value of the imposed deformation.  Information entropy S 
       L    
         S  =  ∑ [ gk*Ln gk ].                                            (8) 
                ê=1 
is  a  measure  of  the  amount of  disorder  ( different states) in SE states.  
The way mentioned above can also be used to find from experimental data ( as Fig. 8) the features of  the 
CMs, possess both the various  types of grains and the various types of local structures which readily 
rearranged to each other at the local zones. 

 This  model  admits  control of the structure mutations in both a CM and  a SE  after  N cycles of  
imposed regular deformation. Fig. 9a – 9b show the regular decrease of probability  gk for  modules having 
a big  value Zk  ( see  (6)). For non-regular deformation there is other situation ( see Fig.10). The increase of 
entropy S ( see (8)) of  SE is presented  on Fig.11. 
Conclusion. The various impurities in Aluminum implement the various resistance to fatigue of an 
Aluminum alloys’ samples.  The same situation one has in  heterogeneous materials, that are used to form 
the sensitive elements (SEs) for fatigue gages [1,2]. The SEs are rigidly installed on the Aluminum alloys’ 
samples and the same spectrum of deformation imposed on both of them. We have educed that the fatigue 
features of a SEs, which have a various impurities, can be reflected on each other [1].  

After imposing a limit number of cycles of fatigue deformation, that change both the CM’s structure 
and the SE’s structure, the single fast cycle of deformation with selected value of amplitude is imposed on 
the sample. The  R - ε (R – electrical resistance of SE and ε - value of imposed deformation) curve, that was 
automatically  recorded within this fast cycle of deformation, permits one to bring out the forthcoming 
structures of SE and its features, that will take place at the near future cycles of imposed deformation. 
Reiteration of these processes also for Q-1 - ε curves gives the chance to do the monitoring of fatigue 
features  of polycrystal alloys’ samples .  
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