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ABSTRACT 
Dynamic necking bifurcation in rapidly extending cylindrical rods is investigated. It has been found that both 
short wavelength and long wavelength perturbations are suppressed by inertia and an intermediate wavelength 
is favored. The analysis predicts an increase in the number of necks and an increase in the bifurcation strain 
with increasing extension rate, in agreement with the experimental observations. In terms of the number of 
necks formed as a function of extension rate, good agreement has been found between the experiments and the 
analysis. At any given aspect ratio, the model also predicts that the number of necks increases rapidly beyond a 
critical extension rate. Currently no experimental results are available to verify this prediction. 
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INTRODUCTION 
 
The necking instability in rods under quasi-static uniaxial loading has been studied by Miles[1], Cheng et al. 
[2], Hutchinson & Miles [3] and  Hill & Hutchinson [4]. The general approach has been to use perturbation 
analysis in order to determine the critical stress state at which a non-homogeneous, neck-like deformation field 
can exist. Hutchinson and Miles [3] showed that such a deformation field can exist at a critical stress, which is 
greater than the stress at maximum load, and the lowest critical stress corresponds to the longest wavelength 
perturbation, in other words, a single neck is formed at this critical stress. However, fragmentation experiments 
of Grady & Benson [5] and Altynova et al. [6] have demonstrated that rapidly expanding rings form multiple 
necks and some of these necks fail, leading to fragmentation of the rings. Shenoy and Freund [7] generalized 
the perturbation analysis of Hill and Hutchinson [4] to study a rectangular block of material, dynamically 
loaded in plane strain, using a hypoelastic constitutive relation. They examined the growth rate of neck-like 
perturbations and found that short as well as long wavelength perturbations are suppressed and intermediate 
wavelengths have the highest rate of growth. Their analysis captured the qualitative features of the 
experimental observations such as the increasing number of necks and the increasing ductility with an increase 
in extension rate. However, direct comparison with experiments could not be performed as it was a plane strain 
analysis. In this paper, the perturbation analysis of Shenoy and Freund [7] is adapted to an extending cylinder 
in order to facilitate comparison with experiments. This work is a generalization of the analysis of Hutchinson 
and Miles [3] to include inertial effects. The next section  discusses the homogeneous solution to the extending 
rod problem, followed by a section on perturbation analysis. Results and a brief discussion are presented at the 
end. 

 
HOMOGENEOUS DEFORMATION 
 
Consider an incompressible cylindrical rod of radius A and length 2L, undergoing homogeneous deformation 
in the axial direction, as shown in Fig. 1. The ends of the rod move with a speed v0 as shown. Denoting the 
reference coordinates as (R, Θ, Z) and current coordinates as (r, θ, z), the deformation is described as 
 
                                                       ,Rr 2/1−= λ Zz λ=                                                                                     (1,2) 
where                                              Ltv /01    +=λ                                                                                           (3) 



with t representing time. Using eq. (1)-(3), the velocity field corresponding to the homogeneous deformation 
state is 
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The fields vr(R,Z,t) and vz(R,Z,t) are the radial and axial components of velocity. The Cauchy stress ( ) for 
this homogeneous 1-D deformation is 

σ

                                        σ =                                                                              (6) 
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where σ is the axial stress due to strain history and p is the hydrostatic stress due to particle acceleration ( see 
eq.(4)). Using the equation of motion in the radial direction and the condition that p=0 at R=A, p can be 
determined to be [7] 
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In the above equation, ρ is the mass density. Eq. (4) and (5) describe the deformation state and σ is not known 
since no constitutive relation has been used yet. The stability of this deformation state is analysed next. In other 
words, if the velocity field given by eq. (4) and (5) is slightly perturbed in a way that is consistent with the 
boundary conditions, we examine if such a perturbation grows in time and, if it does, what is its rate of growth.  
 
LINEAR PERTURBATION ANALYSIS 
 
The equations of motion in the rate form in terms of the components of the first Piola Kirchoff stress T are 
                                    T                                                                                  (8) rRrZZrRRr vRTTT &&&&&& ρθ =−++ Θ /)(,,

                                    T                                                                                                (9) zRzZZzRRz vRTT &&&&& ρ=++ /,,

All derivatives with respect to Θ are set to zero in writing these equations. The boundary conditions are 
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In the above equations,  can be expressed in terms of the current stress and deformation quantities using T&
                                        T                                                                                              (14) W)Dˆ(F σσσ ---1=&

where F  is the deformation gradient, σ  is the Jaumann rate of Cauchy stress, ˆ D  and W  are the symmetric 
and antisymmetric parts of the velocity gradient. The material is assumed to follow the hypoelastic constitutive 
relation developed by Storen and Rice [8], which in the present context becomes 
                                        θθσ DhhDhh rrrr )()(ˆ 11 −++=′                                                                                  (15) 
                                        θθθθσ DhhDhh rr )()(ˆ 11 ++−=′                                                                                    (16) 
                                        zzzz hD2ˆ =′σ                                                                                                                 (17) 
                                        rzrz Dh12ˆ =′σ                                                                                                                (18) 
where prime denotes the deviatoric component. In writing eq. (15)-(18), it was assumed that vθ = 0, all 
derivatives with respect to θ  are zero and .0=++ zzrr DDD θθ  Here h and h1 are the tangent modulus and the 

secant modulus of the graph of equivalent stress 2/ijijσσ ′′  vs. equivalent strain ijijεε2 . This curve reduces 
to the shear stress – shear strain curve in pure shear. It can be verified that the homogeneous solution given by 
eq. (4)-(7) satisfies eq. (8)-(18). In addition, σ at any time can be calculated by integrating eq. (15)-(18). 
 
Introduce, at some time τ, a perturbation velocity field (vr′, vθ′, vz′) such that vθ′=0, and vr′ and vz′ do not 
depend on θ. Then, it can be seen that this perturbation velocity field, along with the corresponding 
perturbation stress field satisfies eq. (8)-(18), with eq.(10) modified as 



                                                              0=±′ ),,( tLRvz                                                                                   (19) 
Dropping the prime for convenience, eq.(8)-(9) and eq. (11)-(19) are the governing equations for the 
perturbation velocity field and the task is now reduced to analyzing the evolution of this field. Without loss of 
generality, τ can be set to zero, so that 1=F  and the reference and current configurations coincide with each 
other. Note that eq. (15)-(18) do not determine the hydrostatic component of the stress rate and, in order to 
eliminate it, eq. (8) is differentiated with respect to z and eq. (9) with respect to r and subtracted from one 
another. This results in 
                           ( ) ( ) ( )r,zz,rrzr,rzrr,rzz,rrzz,zrzr,zzrr v-vr/Tr/T-T-r/T-TTT-T &&&&&&&&&&&& ρθθ =+++ 2                           (20) 

Since the material is incompressible, vr and vz can be written in terms of a potential )t,z,r(ϕ  as z,rv ϕ−=  and 
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Assuming a separable solution of the form 
                                                              ( ) ( ) ( )tTz,rt,z,r ψϕ =                                                                          (22) 
results in an equation for ψ(r,z) as 
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where 
T
T&&

=2θ , is the separation constant. If is real and positive, the perturbation field is unstable. Assume a 

separable solution once again. 

2θ

                                                              ( ) ( ) ( )zrgzr  γψ cos, =                                                                           (24) 
In order to satify the boundary condition eq.(19),  
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q

2
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Using eq.(24) in eq. (23), the governing equation for g(r) is obtained as 
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Assuming a power law type uniaxial stress-strain relation, 
                                                                                                                                                             (27) nkεσ =
where k and n are material constants, n denoting the strain hardening exponent. Also, n=h/h1.  By defining 
                   b  )//()])(/()/(/[ nsnsnqvvNn n

p 231213 1222
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in which h/s 3σ= , ρ/kp =v  and ( )2
0v/LN θ= , eq.(26) can be written as 

                                                ( ) ( ) 02 422 =++ gcgbg γγ LL                                                                            (28) 

where the operator is defined by . Further, by setting L ( ) 2rgrggg //'''L −+= cbb −−= 22
1ρ  and 

cbb −+= 22
1ρ , eq.(28) can be represented as 
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The boundary conditions eq. (12) and (13) give 
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Nontrivial solutions of eq. (29) are sought subject to constraints eq.(30) and (31). The solution to eq.(29) has 
different forms depending on the complex character of  and . The relevant case here is the one when 

and form a complex conjugate pair, in which case eq.(29) admits a solution of the form 
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where bar denotes complex conjugate, B is an arbitrary complex constant, ρ  a square root of either  or 
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In the above equations, N represents the rate of growth of the perturbation relative to the background 
homogeneous rate of stretch. N is required to be large compared to 1 for a perturbation mode q to result in 
multiple necking. For a given strain hardening exponent n, stress s, aspect ratio A/L, extension speed v0/vp and 
perturbation mode q, eq.(33) determines the rate of growth N.  
 
RESULTS AND DISCUSSION 
 
The calculation procedure is described first. For a given n, aspect ratio β=A/L, stress s and extension rate v0/vp, 
eq. (33) is solved for N as a function of q. The value of q corresponding to the maximum value of N (Nmax) is 
termed qmax and it represents the dominant perturbation mode for these conditions. However, we require Nmax 
>> 1 for this perturbation mode to turn in to a necking mode. Hence, a given mode qmax is supposed to satisfy a 
failure criterion when Nmax = NC, where NC is an arbitrarily chosen large number. In the following analysis, NC 
is chosen to be 200. If Nmax < NC, s is increased gradually until Nmax =NC. The corresponding s is the critical 
stress (sc) for necking bifurcation. The fragmentation experiments of Grady & Benson [5] and Altynova et al. 
[6] show the following qualitative features. (i) The number of necks/fragments increases with an increase in 
extension rate. (ii) The fracture strain increases with an increase in extension rate. The current analysis 
quantifies these observations, as illustrated in Fig. 2 and Fig. 3. Fig. 2 shows the number of necks as a function 
of extension rate, for different hardening exponents. The analysis predicts that the hardening exponent has little 
effect on the number of necks, within the range of v0/vp plotted in Fig. 2. Fig. 3 shows an almost linear increase 
in critical strain, which is again independent of the hardening exponent. One of the drawbacks of the analysis 
presented above is the arbitrary choice of NC. However, the number of necks is weakly dependent on NC. An 
increase in NC from 100 to 2000 results in an increase in the number of necks by a factor of 2-3. Thus, a 
judicious choice of NC could possibly be made from an appropriate comparison with experiments. Comparison 



of the perturbation analysis results with those of the experiments requires information about the constitutive 
behavior of the material at the high strain rates. Typical strain rate in the experiments of Grady and Benson [5] 
on aluminum and copper rings was around 104/s. For these materials, this is also the strain rate around which 
there is a sharp increase in the flow stress. Thus, the accuracy of the constitutive data available places a 
limitation on the comparison with the experimental results. Fig. 4 compares the number of necks observed in 
the fragmentation experiments of Grady & Benson [5] on OFHC copper rings with the model predictions, for 
four different choices of NC. Constitutive parameters used are k=760MPa and n=0.49 (strain rate 1.2 x 104 /s, 
Follansbee [9]). A value of 125-200 for NC appears to fit the experiments well. Similar comparison for 1100-O 
aluminum is shown in Fig.5. Constitutive parameters used are, k=230MPa and n=0.33 (strain rate 103 /s, Pao 
& Gilat [10]). A choice of 150-250 for NC appears to yield god agreement. Figs. 6 and 7 show the comparison 
between the bifurcation strain from the analysis and the fracture strain measured by Grady and Benson [5] for 
the same materials. Fracture strain, defined as the change in the total length of all fragments with respect to the 
initial ring length, always overestimates the bifurcation strain. In spite of that, the model captures the 
magnitude and the trend of fracture strain quite well. Fig. 8 shows the variation of the number of necks over a 
larger range of extension rate, for several aspect ratios. The number of necks is seen to increase rapidly beyond 
a critical extension rate and this rate decreases as the aspect ratio increases. As the number of necks increases 
rapidly, the stress is seen to saturate at the same value for all aspect ratios and this level is found to be a 
decreasing function of the hardening exponent. However, no experimental results are currently available to test 
the validity of this prediction. 
 
CONCLUSIONS 
 
A linear perturbation analysis of extending cylindrical rods has been carried out and it captures all the 
qualitative features of the fragmentation experiments, such as the increase in the number of fragments and 
fracture strain with increase in extension speed. Good quantitative agreement between the model predictions 
and the experimental results has been found for a choice of NC in the range of 100-250. Moreover, the choice 
of the range of NC that yields good agreement with experiments for two different materials is almost the same. 
This implies a predictive capability for the current analysis. The constitutive law for the materials used in the 
experiments is very rate sensitive at the strain rates encountered during rapid extension. Thus, the accuracy of 
constitutive data is an important ingredient in using the perturbation analysis. The model also makes other 
predictions on the effect of aspect ratio on the number of necks and fracture strain and the effect of the 
extension speed on the number of necks beyond a critical speed. More detailed experimental results are 
necessary to test these predictions. 
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Figure 7. Fracture strain comparison for
1100-O aluminum 

Figure 6. Fracture strain comparison for 
OFHC copper 

Figure 5. Comparison with experiments 
for 1100-O aluminum 

Figure 4. Comparison with experiments 
for OFHC copper 

Figure 3. Variation of critical stress with 
extension rate 

Figure 2. Number of necks as a function of 
extension rate. 

Figure 1. Geometry of the deforming cylinder 
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