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ABSTRACT 
 
An error index for the stress intensity factor (SIF) obtained from the finite element analysis (FEA) results 
using singular elements is proposed. The index was developed by considering the facts that the analytical 
function shape of the crack tip displacement is known and that the SIF can be evaluated from the 
displacements only. The advantage of the index is that it has the dimension of the SIF and converges to zero 
when the actual error of the SIF by displacement correlation technique converges to zero. Numerical 
examples for some typical crack problems, including a mixed mode crack, whose analytical solutions are 
known, indicated the validity of the index. The degree of actual SIF error seems to be approximated by the 
value of the proposed index. 
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INTRODUCTION 
 
It is popular to evaluate the integrity of a cracked structure under arbitrary loads by comparing the stress 
intensity factor (SIF) for the crack with the critical value peculiar to the material. The SIF is often evaluated 
from finite element analysis (FEA) results and it is effective particularly when the SIF solution for the crack 
under specific load condition is not known, while the error estimation of the obtained SIF is very important. 
 
In the past, many techniques have been proposed for FEA of a cracked structure in order to express and 
evaluate the stress singularity of the stress at the crack tip. Among these, one of the most popular techniques 
is to apply singular element (SE), which Barsoum [1] and Henshell and Shaw [2] proposed independently, to 
realize the crack tip stress singularity. In this case, the SIF is usually evaluated by Tracey’s formula [3] 
(Displacement Correlation Technique, hereafter referred to as DCT). The feature of this technique is that a 
SIF of practical accuracy can be obtained by comparatively coarse mesh division. So, many researchers have 
been trying to answer the question “how coarse the SE can be to secure the SIF accuracy?” However, the 
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load conditions as well as the SE size has become known to affect the SIF accuracy. Thus, it is generally 
accepted that an optimum SE size that satisfies arbitrary conditions does not exist [4]. 
 
Generally the accuracy of the SIF solution by FEA is improved by increasing the number of elements. 
However, since it is an engineering problem (and especially to take advantages of SE), it is desirable to 
obtain sufficiently accurate SIF by a mesh division as coarse as possible. This will be possible if we can 
estimate the error of the SIF obtained from one trial analysis. We can make corrections or judge whether the 
obtained SIF solution is applicable from a practical viewpoint. Fuenmayor et al. [5] applied the error index 
(expressed through the energy norm) which Zienkiewicz and Zhu [6] proposed for estimating errors in FEA 
results. However, since the error index is not expressed in terms of the SIF, one can only expect that the SIF 
error will be small when the index becomes small. We cannot know the degree of the actual SIF error. So we 
developed a new SIF error index that has the dimension of the SIF, based on the following three facts: (i) 
The analytical function forms of the crack tip displacements are known. (ii) Though incomplete, 
displacements on a SE represent a part of the analytical displacement distribution. (iii) The SIF can be 
evaluated from the displacements of crack tip elements. 
 
In the following, we will first explain the concept of the error index which we have developed, and then 
demonstrate its validity by comparing our error index with the actual error for two typical crack problems 
whose analytical solutions are known. 
 
 
PROPOSAL OF DCE (DISPLACEMENT CORRELATION ERROR) INDEX 
 
Consider a polar-coordinate system (r, θ) as shown in Figure 1 where the crack tip is chosen as the origin 
and the crack surfaces as θ = ±π. In this case, the relative displacements u*(r, θ) and v*(r, θ) in the x and y 
directions between two symmetric points across the x axis can be related to only mode I and mode II 
deformations [7], respectively, and, by applying the asymptotic solutions of the displacements u(r, θ) and v(r, 
θ) in the x and y directions, are given as 
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where G is the shear modulus and the functions fI v n and fII u n are defined as follows: 
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Figure 1: Singular 
crack tip elements 

Here, suffixes I and II indicate the corresponding crack opening modes, and 
suffixes u and v represent the quantities corresponding to the displacements 
u and v, respectively. κ is (3-4ν) for plane strain or (3-ν)/(1+ν) for plane 
stress when ν is Poisson's ratio. Note that the SIFs are given as KI = π2  AI 1 
and KII = - π2  AII 1. 
 
On the other hand, when U(r, θ) and V(r, θ) are the displacements of SEs 
from FEA, corresponding relative displacements U*(r, θ)≡U(r, θ)- U(r, -θ) 
and V*(r, θ) ≡V(r, θ)- V(r, -θ) related to mode I and mode II deformations, 
respectively, are given by 
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The Tracey’s formula [3] is frequently used to evaluate the SIF from FEA results. That is, the SIF KDCT is 
evaluated by letting Eqn. (3) correspond to the first two terms of Eqn. (1) on the crack surfaces (θ =π) and it 
is given concretely, considering fI v 1(π) = fII u 1(π)=κ+1, AI 1 = KI  DCT /(2π)1/2, AII 1 = -KII DCT/(2π)1/2 and  
setting G' ≡ (2π/L)1/2G/(1+κ), as 
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Note that the KDCT in Eqn. (4) is evaluated for θ =π . It generally differs from the SIF evaluated in a similar 
way for other θ (≠π), because SE displacements are not guaranteed to satisfy the angular characteristics 
which analytical expressions may show. 
 
When we think of a sufficiently small region around a crack tip, terms higher than O(r 3/2) can be neglected 
in Eqn. (1). The relative displacements can be accurately expressed by the first two terms of Eqn. (1). If the 
true SIFs KⅠ and KⅡ are known, Eqn. (1) can be deduced for the crack surfaces, with fⅠ v 2(π) = 0 and 
 fⅡ u 2(π)=0 as follows. 
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On the other hand, the corresponding expressions U*(r, π) and V*(r, π) for the SEs are deduced, by 
substituting the SIFs KⅠ DCT and KⅡ DCT in Eqn. (4), as 
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The nodal displacements in FEA are obtained by determining the unknown coefficients in the adopted 
displacement function through potential energy minimization process and Eqn. (3) does not necessarily 
coincide with Eqn. (1). Thus, the coefficients of r/L in Eqn. (6) are not zero unless the adopted displacement 
function can express the true displacement solution. However, since the SEs under consideration are 
conformal elements [1], FEA displacements tend to the exact solutions when the size of the elements 
approaches zero (note that the element size has to be decreased not only in the r direction but also in the θ 
direction). Then, the second term in Eqn. (6) converges to zero and KDCT to the true value. This suggests the 
possibility of the second term in Eqn. (6) to become a SIF error index. We will now multiply the coefficient 
for r/L in Eqn. (6) with (-G'/2) and name it DCE index (Displacement Correlation Error Index) ∆KDCE, which 
now has the dimension of a SIF. 
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Strong points of the DCE index, the proposed error index, are that (i) it can be directly calculated from the 
nodal displacements on the SEs, (ii) it converges to zero when the size of the SEs approaches zero and (iii) it 
has the dimension of a SIF. Thus, the DCE index differs from conventional error indexes, which generally 
focus on the convergence during iterative mesh refinements. The DCE index may therefore give a SIF error 
estimate from a single FEA results. This suggests the possibility of dramatically reducing efforts and costs in 
SIF analysis. 
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NUMERICAL EXAMPLES 
 
In this section, FEA for two typical crack 
problems, whose analytical SIF solutions Kref 
are known, were conducted by using SEs. 
Here the KDCT is a SIF computed with DCT 
(Eqn. (4)) and ∆KDCE is a DCE Index 
evaluated from the FEA results. Finally, 
Kerror= (KDCT – Kref) was compared with the 
corresponding ∆KDCE. In all cases, shearing 
modulus G of 79 GPa and Poisson’s ratio ν 
of 0.3 were used. The number m of SEs 
investigated was 8 [8], 16, 24 and 30. For 
each m, a normalized SE size L/a of 1/3, 1/6, 
1/12 and 1/24 was considered, approximately 
corresponding to the guideline proposed in 
the early days [8] (only the SEs were re-
divided). 
 
Circumferential Crack in a Cylinder under 
Uniform Tension 
 
A circumferential crack in a cylinder under 
remote uniform stress σ = 9.8 MPa as in the 
left of Figure 2 was considered first. The 
dimensions of the cylinder were Rm = 95 mm 
in mean radius, W=10 mm thick and H = 
16W = 160 mm long. The crack length was a 
= 1 or 3 mm. KI error was obtained by using 
Nied’s analytical solution (a/W, KI ref 
MPam1/2) = (0.1, 0.636), (0.3, 1.324) [9]. It 
was compared with ∆KI DCE in the right of 
Figure 2 (m = 16). 
 
There are four results for each a/W in Figure 
2 and each result corresponds to the normalized SE size L/a, which has a positive correlation with the ∆KI 

DCE. The maximum difference between KI error and ∆KI DCE in the figure is seen to be 0.67% of KI ref for the 
mark corresponding to a/W = 0.1 and L/a = 1/3. The figure shows the tendencies of ∆KI DCE and KI error to 
decrease while L/a is made small. In addition, ∆KI DCE and KI error are not very different for this problem. 

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

-0.02 0.00 0.02 0.04 0.06 0.08 0.10
∆K I DCE/K I ref

K
I e

rr
or

/K
I r

ef

ModeⅠm

24

16

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.1 0.0 0.1 0.2 0.3

∆ K II DCE/σ (π a )1/2
 x 103

K
II

 e
rr

or
/ σ

( π
a

)1/
2  x

 1
03

Mode IIm
24

16

8

a
W

H

y

x

Rm

σ

σ

0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06 0.08 0.1

∆K I DCE/K I ref

K
I e

rr
or

/K
I r

ef

  a/W

  0.3
  0.1

0.0067

Figure 2: Actual SIF error KI  error and DCE Index 
∆KI DCE (Rm/W= 9.5, H/W = 16, m = 16, ν = 0.3) 

Figure 3: Effect of SE number m on actual SIF error 
Kerror and DCE Index ∆KDCE (for a/W = 0.1 in Figure 2) 

 
Here as in the right of Figure 2, m = 16 was chosen without special notification. The effects of m on mode I 
and II KDCTs for the case of a/W = 0.1 are summarized in Figure 3 left and right, respectively. Figure 3 
left explains why we selected this specific m. There are four data for each three marks in Figure 3. 
 
In the problem here, the analytical SIF for mode II is zero, so that KII error= KII DCT. Therefore KII ref = 
σ(πa)1/2 was used to normalize KII error and ∆KII DCE in Figure 3 right. We see from Figure 3 right that an 
increase in m does not necessarily contribute to the decrease in KII error. It seems that this is due to the 
fact that the mode II SIF is zero for this problem, and that the tendency expected for conformal 
elements does not appear for small KII, unless m and L are decreased together smoothly. On the other 
hand, we see from Figure 3 left that if we choose m to be 16 or more, the vertical distance between a 
mark and a line of unit slope crossing the origin (the difference between KI error and ∆KI DCE) becomes 
approximately constant. Thus, the effect of m on the mode I SIF can be disregarded. 
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Center Slant Cracked Rectangular Plate 
Subjected to Uniform Tension 
 
The problem of a center slant cracked rectangular 
plate under uniform stress σ = 9.8 MPa in Figure 4 
left was considered. The dimensions of the plate 
were 2W = 30 mm wide and 2H = 60 mm high. The 
crack had a length of 2a = 6 or 12 mm and an angle 
of α=30o. Kerror was obtained by using 
Kitagawa’s analytical solution (KI ref , KII ref) = 
(0.735, 0.415), (1.138, 0.605) MPam1/2 [10]. It was 
compared with ∆KI DCE in the right of Figure 4. 
This figure is the result for m = 24. 
 
The effects of m on mode I and II KDCTs for the 
case of a/W = 0.6 are summarized in Figure 5 to 
explain why we selected m = 24. There are four 
data for each mark in the figure. As we see from 
the figure, there was a difference in the mode I 
∆KDCE/Kref and mode II ∆KDCE/Kref of up to 2.74% 
for m = 8. We thought that the error index 
∆KDCE/Kref for each mode should not show such a 
large discrepancy, because we estimate the SIF and 
its error only from FEA displacements. Thus, we 
set a guideline for this mode I and II ∆KDCE/Kref 
discrepancy to be lower than 1.5% and selected m 
= 24 for the problem under consideration. Note that 
the mode I ∆KDCE/Kref changed slightly as m 
increased. 
 
As in the right of Figure 2, there are four marks for 
each a/W in Figure 4 and each mark corresponds to 
the normalized SE size L/a, which has a positive correlation with ∆KDCE. The maximum difference between 
Kerror and ∆KDCE in the figure can be read as 3.40% of Kref for mode II. The figure shows the tendency of 
∆KDCE to decrease while L/a is made small and Kerror to decrease accordingly. 
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Figure 5: Effect of SE number m on actual SIF 
error Kerror and DCE Index ∆KDCE  (for a/W = 0.6)

Figure 4: Actual SIF error Kerror and DCE Index
∆KDCE (H/W = 2, m=24, α=30o, ν = 0.3) 

 
 
DISCUSSIONS 
 
The DCE Index ∆KDCE, which we proposed in this paper, is intended to give a rough idea of the error of the 
SIF obtained from FEA results. When we refine the crack tip SEs in both r and θ direction with proper 
correlation (or in terms of the previous section, decrease L/a and 1/m), the plot (∆KDCE, K error) on a plane is 
expected to approach the origin. That is, ∆KDCE is expected to converge to K error. This characteristic of 
∆KDCE is similar to that of the error index proposed in the past [5], [6] which was based on the energy norm. 
However, we think that ∆KDCE is advantageous because it has the dimension of a SIF and the SIF error can 
be discussed directly. 
 
When we refine the crack tip SEs, we had better reduce the element size in both r and θ directions properly 
by correlating two parameters L/a and 1/m. However, because this makes the finite element division quite 
difficult, we first fixed the number of elements in the θ direction m and reduced the element size in the r 
direction in the numerical examples shown in the previous section. The results showed that KI is relatively 
insensitive to mesh refinements in the θ direction, thus, we can concentrate on refining the mesh in the r 
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direction once we choose m larger than a certain value. On the other hand, the situation differs with regard to 
KII; that is, the convergence of KII by varying m should be confirmed. In any case, the validity of m can be 
judged by the discrepancy between plots on a figure like Figure 5 and the origin when L/a is made small, in 
case that analytical SIF solutions are known. Note that the m presented in the numerical examples in this 
paper satisfies this condition (at least for KI whose accuracy is important for practical problems) and that our 
error index approximates the SIF error closely for ∆KI DCE/KI ref< 0.05. Next, what about the cases for 
which the analytical solutions are not known (that is, cases the error index is meant to be developed for)? We 
think that the results for KI show (though some more study might be necessary) that when we choose m ≥ 16 
and consider a case under ∆KI DCE/KI DCT< 0.05 instead of ∆KI DCE/KI ref< 0.05, our error index gives an 
approximate evaluation of the SIF error itself and that there is a possibility to compensate the error in KI DCT. 
Regarding to KII, as shown in Figure 5, the plots (K error, ∆KDCE) moves closer to the origin when L/a is made 
small and m is increased. From this, we expect that an error estimation procedure similar to that for KI just 
mentioned can be applied to KII, if we use large m. However, applying large m is not necessarily realistic. In 
this sense, what we refer to as a SE may not necessarily be suitable for KII evaluation. Nevertheless, if we 
use this SE for the KII evaluation, a candidate for the m selection criteria is ∆KI DCE/KI ref - ∆KII DCE/KII ref 
as shown in the previous section, because a discrepancy in accuracy of KI and KII is not desirable. In 
situations where the analytical solution is not known (the cases for which the error index was developed), the 
criteria will be ∆KI DCE/KI DCT - ∆KII DCE/KII DCT instead. 
 
Recently, Rahulkumar et al. [11] proposed an approach to use higher order SEs for an accurate SIF 
evaluation with a coarse mesh division. However, judging from the results of mixed mode problems 
discussed in the previous section, it still remains necessary to try to find a proper mesh refinement in the 
θ direction (selection of m) even though higher order elements are used. For this case too, we think it will be 
effective to first select m for Barsoum’s SE by applying ∆KDCE as proposed in this paper. 
 
 
CONCLUSIONS 
 
In this paper, an error index for SIF obtained from the FEA results using SEs was developed and was named 
DCE (Displacement Correlation Error) index. The DCE index was developed as a SIF error index that has 
the dimension of a SIF, based on the following three facts: (i) The analytical functional form of the crack tip 
displacements are known. (ii) Though incomplete, displacements on a SE represent a part of the analytical 
displacement distribution. (iii) The SIF can be evaluated from the displacements of crack tip elements. In 
spite of the DCE index not being a SIF error itself, the presented numerical results (for the problems whose 
analytical solutions are known) for appropriate mesh divisions in the θ direction show that the DCE index is 
close to the actual SIF error, especially for mode I SIF evaluations whose accuracy is important for practical 
problems and that error compensation might be possible in an engineering sense. 
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