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ABSTRACT 
 
Fracture toughness is a material property only under certain restrictions concerning size, thickness, crack-
length, loading mode, notch root radius, etc. To quantify such effects on the crack resistance the "local 
approach" is usually applied, which is very demanding in terms of numerical modelling and computational 
power. For practical engineering application as well as for teaching purposes, simpler analytical 
considerations are needed, which allow these effects to be predicted at least qualitatively. In the present 
paper simplistic mechanical models in conjunction with a suitable fracture criterion are outlined. A key 
element in the analysis is the local fracture criterion, which is required to link the global and local fracture 
behaviour. A suitable and promising parameter is the critical strain energy density. As pointed out in this 
paper, this parameter enables one to obtain relatively simple but surprisingly accurate formulas to predict 
effects of crack-tip constraints, finite notch root radius, and mixed mode loading on the fracture behaviour. 
Even problems of repeated loading like low-cycle fatigue of notched or cracked components can be dealt 
with.  
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INTRODUCTION 
 
The concept of engineering fracture mechanics is essentially based on the hypothesis of autonomy of the 
fracture process zone, and a few parameters that are able to characterise the loading state of this zone, like 
the stress intensity factor in linear-elastic fracture mechanics or the J-integral in elastic-plastic fracture 
mechanics. The critical values of these parameters, called fracture toughness, characterise the resistance of 
the material against crack extension. Engineering fracture mechanics enables one to predict the behaviour 
of a crack without requiring a detailed analysis of the complex local fracture mechanisms. However, the 
autonomy of the fracture process zone is not guaranteed absolutely, since the fracture behaviour depends on 
the local constraints, which are affected by several system parameters, like component size, crack-length, 
geometry and loading case of the system. This means that fracture toughness is not a pure material 
property, but dependent on these parameters.  
 
To quantify the effects of the above-mentioned parameters on the constraint conditions and the local 
fracture mechanisms, a detailed analysis of the crack-tip region is required, known as the "local approach". 
However, the corresponding non-linear 3D-FEM-analysis to compute the basic local parameters is quite 



demanding in terms of modelling, computational effort, hard- and software capacity, thus not well suited 
for engineering application. For such practical purposes as well as in teaching much simpler, rather 
analytical approaches are needed.  
 
In this paper, semi-analytical ways to deal with the above mentioned local effects are pointed out, including 
constraints, notch root radius, mixed mode loading, and cyclic loading. A key element in such an analysis is 
a suitable failure criterion. It is shown how the critical strain energy density as suggested by Gillemot [1] 
can serve for this purpose. This material property seems to represent a linking parameter between local 
fracture and the global behaviour, and to control most aspects of ductile fracture. Therefore the first part of 
the paper deals with the definition and determination of this interesting physical quantity. Then simplistic 
local models to predict the behaviour of fracture toughness by simple closed-form formulas are outlined. 
Due to a lack of space the author restricts himself to discussing the key ideas and presenting the main 
results, rather than giving strict mathematical derivations. The objective of this paper is just to give an 
overview on the possibilities of these types of semi-analytical and semi-local approaches. 
 
 
CRITICAL STRAIN ENERGY DENSITY 
 
According to Gillemot’s general failure criterion [1] an elastic-plastic material will fail in a ductile manner 
if the strain energy density U reaches a critical, material-dependent value Uf, i.e. if 
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Uf is a material property. Since (1) holds for any loading case, the simplest way to determine Uf is by a 
uniaxial tensile test, where it represents the area under the true-stress-true strain-curve up to fracture. (right 
hand side of Fig. 1). The average true strain during the entire test, including the necking phase, is obtained 
as εt=ln(A0/A), where A0 and A denote the initial cross section and the actual one, respectively. In the range 
of uniform strain (i.e. 0< εt < ln(1+Ag)) the true stress-strain-curve can be approximated as  
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where Ag denotes the engineering strain at maximum load (i.e. standard uniform fracture strain). In the 
subsequent necking phase, the true stress-strain-diagram is often more or less straight, as shown in Fig. 1. 
With these assumptions, Uf is determined by 
 

Uf = Um + Unf with: 
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Fig. 1: Determination of the true stress-strain-curve (right) from the engineering one (left) and definition of 

the portions Um and Unf of the specific fracture energy Uf= Um + Unf 



 
Z=(A0-Af)/A0 denotes the standard reduction of area of a tensile test specimen. If Rf is not known, which 
often the case if the full stress-strain-curve is not available, the following approximate relation is useful: 
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Eq. (4) follows analytically from the assumptions underlying (2) and (3) and the condition of continuity at 
the transition at εt=ln(1+Ag). If not even Ag is known, then we suggest the rough estimation  
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according to [3], where σf=(Rp+Rm)/2 denotes the commonly used flow stress.  
 
 
LOCAL STRESSES AND STRAINS 
 
It is well known from non-linear finite element calculations that the so-called HRR-field [3] breaks down in 
the vicinity of the crack tip. Fig. 2 shows schematically the actual distribution of the stress in y-direction. 
The peak stress, σymax, can be expressed as  
 
  σymax=γ Rp  (6) 
 
where the factor γ depends primarily on the crack-tip constraints and the hardening behaviour of the 
material. It is about 3 for non-hardening elastic-plastic materials and standard constraint conditions, which 
means plane strain and saturated in-plane constraints. Actually, to determine γ accurately a 3D-FEM-
analysis is required. However, according to previous findings of the author [4, 5], a rough estimation 
sufficient for practical purposes is possible by 
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where ν is Poisson's ratio and m is the factor appearing in the basic relation    
 
 J=m⋅Rp⋅δ   (8) 
 
Tmax is the "T-stress" (second term of Williams' expansion [6]) at maximum load of the system.  
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Fig. 2:  Non-dimensional representation of the stress distribution in the vicinity of a crack-tip 



 
The ductile fracture process by void growth and coalescence takes place in a relatively small area of width 
dpr next to the crack-tip (shaded area in Fig. 2). The plastic strain in this "fracture process zone" in y-
direction, εyp, can be assumed to be proportional to the crack-tip opening displacement δ, because the initial 
volume taking part in this process will not change much during the loading process. Thus,  
 
 δ  ∝ εyp (9) 
 
Assuming that a certain portion of strain energy density, corresponding about to Um, is already consumed in 
the preceding phase of general plastic straining according to the HRR-strain-field, Gillemot's criterion (1) 
applied to the process zone can be written as  
 
 nfypp UR =+⋅⋅ )1ln( εγ  (10) 
 
By (8) – (10) the local strain is related to the global crack load J. 
 
 
EFFECT OF CRACK-TIP CONSTRAINTS ON FRACTURE TOUGHNESS 
 
Ductile Tearing 
The value of J near initiation of ductile tearing is size independent only if the corresponding standard size 
and geometry requirements [7] are met. The effect of reduced constraints on the J-value at crack-initiation, 
is experimentally well known [8], but difficult to model and predict analytically. However, from (8) – (10) 
a relation between the constraint-characterising parameters m and γ and the apparent fracture toughness Jit 
follows readily: 
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Jit represents a near initiation value of the J-R-curve, corresponding to the standard J0.2/Bl in the case of 
standard constraint conditions [7]. For a non-hardening material the latter correspond to about m≈1.5 and 
γ≈3, so Jit(m≈1.5, γ ≈3) equals J0.2/Bl. By (11) the effect of reduced constraints (reflected by lower values of 
m and γ) on the fracture toughness can be determined. Predictions from (11) compare well with 
experimental results [4]. 
 
Cleavage Fracture 
In some elastic-plastic materials an unstable cleavage fracture may be triggered at a certain value of J, Jc, 
which can be lower than the above considered Jit. Jc is known to be significantly constraint-dependent. In 
the following, this dependence is estimated. As discussed in [4] unstable cleavage require the following two 
criteria to be met: 
 
i) 

ii)

The maximum stress in the vicinity of the crack tip must exceed the cleavage stress σc*, i.e. 
 
   σymax= γ⋅Rp>σc* (12) 
 

 The elastic energy Wel*=∫Uel dV stored in a critical Volume V* in the vicinity of the process zone must 
be sufficient to produce a cleavage fracture in the range 0<x<dpr.  

 
Criterion ii) means that the ratio Wel*/dpr has to exceed a certain critical value. Using the proportionalities 
Uel ∝ (γ⋅Rp)2 and V* ∝ δ2 leads to Wel*∝ (γ⋅Rp)2⋅δ2. With dpr ∝ δ one readily finds the proportionality 
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As discussed above, Jc(m=1.5,γ=3) corresponds to the standard Juc according to [7]. By (13) the effect of 
reduced constraints on Juc can be determined. For γ<σc*/Rp no cleavage occurs. Predictions from (13) 
compare well with experimental results shown in [8]. 
 
 
NOTCH TOUGHNESS 
 
Consider a sharp notch with a finite root radius ρ. If the end-points of the integration-path to calculate J are 
located on the parallel surfaces, J is path-independent and, thus, able to characterise the loading state of the 
notch. It can be calculated either on a remote path Γr (dashed line in Fig. 3) or a local path surrounding the 
notch root (dotted path-sections Γ1 and Γ4). In order to estimate the effect of the root radius on the critical J-
integral, Jinotch, we calculate J for a notch that is assumed to be in its critical loading state, which means just 
before initiation of crack extension occurs. Under this condition, the local path to calculate J must not 
simply follow the notch surface (sections Γ1 and Γ4), because near y=0 there already are voids which act as 
discontinuities in the strain field, disturbing the path-independence of J. Therefore the integration path is 
chosen to surround the process zone by a "detour" denoted by Γ2 and Γ3 in Fig. 3. In case of sharp notches 
(i.e. ρ<<plastic zone width rp) the stress-strain-fields in the vicinity of the x-axis is expected to be about the 
same as in the case of a crack, so the corresponding integration is expected to give about the value of the 
critical J of a crack, Jicrack. The parts Γ1 and Γ4 of the integration path deliver the contribution ∆Jρ resulting 
from the notch radius, which has the form Uf⋅ρ for dimensional reasons. Thus:  
 

 ρ⋅⋅+=∆+= ρ ficrackicrackinotch UcJJJJ  (14) 
 

The adjustable factor c turned out to be about 0.7, for mild steel [2], high strength steel [9] and even brittle 
materials like ceramics. 
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Fig. 3: Schematic representation of the root region of a sharp notch and the corresponding plastic zone 

 
 
FRACTURE TOUGHNESS IN MIXED MODE 
 
The maximum hoop-stress criterion as commonly used in LEFM for mixed-mode-loading is known to be 
not valid in the case of ductile fracture. Various experimental studies reveal that the critical stress-intensity 
factor in Mode II, KIIC, is about 2 – 3 times higher than KIc. This behaviour can be explained, as shown 
below, by postulating for physical reasons an analogy between mode I and mode II and extending the 
relation (11) to mode II. In mode II there is essentially no constraint, so one can assume γ=γΙΙ=1 and 
m=mII=1 (values of m for mode II are hard to find in the literature, eventually it lies in the range 
0.6<mII<1). This leads to 



 












−










⋅

−









⋅

=

1
R3

Uexp5.1

1
R
Uexpm

J
J

p

nf

p

nf
II

it

IIit  (15) 

 
where JIIit denotes the critical J for pure antisymmetric loading (i.e. pure mode II). In case of mixed-mode 
loading, a physically plausible mode-interaction is a linear damage accumulation in terms of δ or J, thus 
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This relation represents at least a qualitative explanation of experimental data [9]. 
 
 
DISCUSSION AND CONCLUSIONS 
 
The purpose of the present paper was to show that even complex phenomena associated with local fracture, 
like constraint effects, influences of a mode-II-loading components, or a finite notch-tip radius, can be 
successfully and efficiently treated by simple analytical models. Unlike detailed numerical models, they 
result in easy to handle closed form formulas, which allow these effects to be discussed qualitatively, which 
is advantageous in practical applications as well as in teaching.   
 
It shall be emphasised that the critical strain energy density can serve well for various purposes concerning 
fracture. Especially it is well suited to link global to local behaviour. It is the author's believe that the role 
and the possibilities of this parameter in engineering fracture mechanics is still not yet fully recognised. 
Another big field of its application, which was not discussed here due to the lack of space, is the behaviour 
of notched and cracked components under repeated elastic-plastic-straining, like low-cycle fatigue. As 
shown in [10], even high-cycle fatigue crack growth can be analytically treated based on a corresponding 
local fracture criterion.  
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