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ABSTRACT

The maximal penetration depth reached by a �nite corrosion solution during the etching
of a random solid is studied in a two-dimensional model. It is found that the statistical
distribution of the maximal depth values follows a Gumbel law both through theoretical
arguments and numerical simulation . When the maximal penetration of the corrosion front
reaches the size of the sample, a chemical fracture occurs. It is shown that the probability of
this chemical fracture obeys a law which is practically indistinguishable from the empirical
Weibull law used to describe the statistics of mechanical fractures of brittle material. It
is also shown that the statistics of the mechanical failure of a previously corroded sample
follows a similar law.

KEYWORDS

INTRODUCTION

Chemical etching of disordered solids is an issue in several technological problems and in
the theory of random systems. Etching can lead to the rupture of a sample if the etching
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Figure 1: Sketch of the etching dynamics in a square lattice: the sites 2; 3; 5 are etched at
the �rst time-step as their resistances are lower than p(0). At the same time the number of
etchant particles in the solution decreases by 3 units, and a new part of the solid is uncovered.

solution is strong enough, or the solid thin enough. This is de�ned as a \chemical fracture".
Its statistical behavior is studied here in a two-dimensional model. It is found numerically
[1] as well as theoretically that the chemical fracture probability obeys Gumbel statistics
[2] which is typical of an extremal variable. This law has been previously proposed by
(e.g. [3, 4]) as a possible law �tting the statistics of mechanical fractures of samples under
identical conditions of stress. The distribution found is hardly distinguishable from the
Weibull distribution, which is the empirical law generally used to �t mechanical fracture
statistics [5]. Furthermore, we show that the same statistics applies to the mechanical failure
of a sample which has been previously corroded to some extent.

The Gumbel law is found through a study of the extremal properties of the etching front in
a simple two-dimensional corrosion model previously introduced [6]. This model describes
the chemical etching of a random solid by a �nite volume of corrosive solution. It was in-
spired by an experimental study of pit corrosion of aluminum �lms [7] and reproduces the
phenomenology of the experiment. It predicts that the etching stops spontaneously on a
fractal liquid-solid interface as observed experimentally. The model dynamics are character-
ized by a progressive weakening of the corrosive power of the solution and a simultaneous
progressive \hardening" of the solid-liquid interface. When this surface is too hard to be
etched by the weakened solution, the corrosion stops. However, if the solid is too thin, it will
have been fractured before the end of the process. In order to obtain the fracture statistics,
one examines the probability that the maximal depth reached by the solution during the
corrosion process is larger than the sample depth.

The etching model is recalled in Fig. 1 and is described as follows[8]:

1. The solid is represented by a lattice of sites exhibiting random \resistances to corrosion"
ri 2 [0; 1] uniformly distributed. It has a width L and a given �xed depth Y . At any
time t the \etching power" of the solution is proportional to the etchant concentration
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Figure 2: Final corrosion front: It is composed of N � L=� independent regions of size � (�
can be considered as the correlation length of the system). The extremal front position yM
is indicated. It is the max between the N independent values of y

(k)
M of each region.

p(t). The etching solution has a �nite volume V and contains an initial number Net(0)
of etchant molecules. The initial etching strength is then p(0) = Net(0)=V . Hereafter
we choose p(0) > pc, where pc is the percolation threshold of the lattice.

2. The solution is initially in contact with the solid through the bottom boundary y = 0.
At each time-step t, all surface sites with ri < p(t) are dissolved and a particle of
etchant is consumed for each corroded site. Hence, at each time-step the concentration
of the solution decreases.

At the beginning, the corrosion front stays quite smooth and advances layer by layer up to
approximatively the time tc when p(t) = pc. In this regime one can show [8] that p(t) =
p0 exp(�t=� ) with � = V=L. Therefore, this smooth part of the dynamics lasts for a period
on the order of V=L reaching a depth ylin: � V=L. After this regime the corrosion front
becomes very irregular and �nally stops at t = tf . At tf the etching power pf = p(tf ) is
slightly smaller than pc and the �nal corrosion front is fractal with dimension Df = 7=4 up
to a characteristic width �y = � (see Fig. 2). As shown in [8], the model presents the scaling
laws of Gradient Percolation [9] where the role of the gradient is played by the ratio L=V .
This implies that � can be seen as a percolation correlation length and � � (L=V )�1=Df . The
total front shown in Fig. 2 can then be considered as a juxtaposition of nearly independent
fractal zones of lateral width �. The total number of independent regions (hereafter �-boxes)

isN � L=�. The maximal depth yM reached by the front can be written as yM = maxNk=1 y
(k)
M ,

where y(k)M is the maximal �nal depth reached by the corrosion in the kth �-box. The set

of y
(k)
M is then a collection of L=� nearly independent and identically distributed random

variables. Since � is a percolation correlation length, we can say that the distribution of
y
(k)
M has an exponential tail with a characteristic scale y0 of order �. We have then to search
yM as the maximal value among a large set of independent and exponentially distributed
identical random variables. Therefore, in the limit of large N , yM has the following standard
Gumbel distribution [2]:
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Figure 3: Integrated probability distribution for reduced yM (zero mean and unitary vari-
ance) are compared with standard Gaussian and Gumbel distributions. The simulation
results collapse on the Gumbel distribution given by Eq. (1) (continuous line, hidden by
data points).

H(u) � Prob

 
yM � hyMi

�
< u

!
= e�e

�(bu+a)
; (1)

where � is the standard deviation of yM , and a ' �0:5772 and b ' p
1:64493.

The quantities hyMi and � can be written[2]:

hyMi '
D
y
(k)
M

E
+ 2y0 logN (2)

� ' 2 y0 ; (3)

From the previous discussion, one can show also that:

yf ' c1V=L + c2(V=L)
4=7�D

y
(k)
M

E
� yf) � � � (V=L)4=7 (4)

where yf is the average depth of the �nal corrosion front. In summary, (i) [hyMi � yf ] scales
as � if L=� is �xed, and (ii) hyMi dependends linearly on logL for given �. These theoretical
results are con�rmed by extensive numerical simulations. The direct numerical evidence for
a Gumbel statistics is shown in Fig. 3, where the numerical probability distribution function
of the reduced variable [yM � hyMi] =� is represented.

It is now possible to study the chemical fracture of a solid sample with �nite depth Y . This
fracture probability is then given by Prob (yM > Y ):
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Figure 4: Chemical fracture probability Prob (yM > Y ) as a function of the solution volume V
which measures the \chemical force". Small circles are the numerical extimated probabilities.
The line is the result of our theory. Diamond shaped points represent the �t of the fracture
data with a Weibull law.

Prob (yM > Y )=1�exp
(
�A

�
L

�

�b
exp

"
b(yf � Y )

�

#)
; (5)

where Eqs. (1), (2) and (3) have been used, and A is a positive constant.

By substituting yM as a function of V=L, one obtains the chemical fracture probability
distribution P (V ), as a function of the chemical force V for a given p0 (i.e. the initial
etchant concentration) and L. This distribution is determined but the value of A, which
has to be �tted to the numerical fracture statistics (i.e. the fraction of simulation runs that
break the sample as a function of V ). The result is shown in Fig. 4. Also shown in the �gure
is a direct comparison of the best �t of a Weibull law [5] with the direct chemical fracture
statistics. Here again the agreement is good. The Weibull law, introduced to describe the
statistics of brittle materials failure, has the following form:

PW (V ) = 1 � e
�

�
V�V0
V1

�m
; (6)

where V represents an applied stress, V0 is the minimal stress to have �nite fracture proba-
bility, V1 and m are suitable parameters. The extreme similarity between the Gumbel and
Weibull behaviors observed in our model suggests that the underlying probabilistic structure
controlling chemical and mechanical fracture could be the same. This would be a case of
universality.

We now extend the analysis to the case of the mechanical failure of a partially corroded
solid. Here this means that an uniaxial mechanical force F is applied to the lateral sides of a
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sample which has been previously corroded up to yM < Y . The most reasonable hypothesis
is that the force produces the maximal stress at the point where the solid is the thinnest. The
solids fails if this stress, equal to F=(Y � yM), is larger than a critical value sc characteristic
of the material. The failure probability is then equal to P [yM > (Y � F=sc)]. Therefore,
in this model, even the mechanical failure of a corroded solid presents statistics related to
the extremal Gumbel law. It is worth to note that this case of failure can be seen as the
e�ect of a stress under corrosion, while it is corrosion under stress that is typically studied
experimentally. The relationship between these two mechanisms requires further study.
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