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ABSTRACT

Localized (pitting) corrosion is recognized as a primary degradation mechanism that affects the durability and
integrity of structures made of aluminum alloys, and it is a concern for commercial transport and military
aircraft. Corrosion pits have been shown to commence at constituent particles, and to evolve into severe pits
by growth through clusters of these particles in the alloys. These severe pits serve as nucleation sites for
subsequent corrosion fatigue cracking. Thus, the role of clusters of constituent particles is critical to the
quality of aluminum alloys subjected to deleterious environments. To formulate a stochastic model of
corrosion, as a part of the methodology for structural reliability analysis, it is essential to have quantitative
descriptions of the spatial statistics of the particles and particle clusters, including their location, size, density
and chemical composition. A simple probability model incorporating the role of clustered particles on the
growth of corrosion pits is presented and discussed. The proposed model includes the effect of randomness in
the number and sizes of the clusters. The applicability of the model is considered in terms of experimental data
from 2024-T3 aluminum alloy specimens that had been exposed to a 0.5 M NaCl solution.
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INTRODUCTION

Pitting corrosion in aluminum alloys has been recognized as a significant degradation mechanism, specifically
as a precursor to corrosion fatigue crack initiation and growth, that impacts the reliability, durability, and
integrity of both military and commercial aircraft [1-4]. It has been shown that pitting results from the
galvanic coupling of constituent particles with the alloy matrix [5-9]. Pit growth is a stochastic process that
depends upon material properties and environmental conditions. In fact, severe pits with depths greater than
20 µm have been observed as nuclei for the early onset of fatigue crack growth and subsequent reductions in
fatigue live.

The scanning electron microscopy (SEM) micrograph in Fig. 1(a) shows a typical pit that resulted from the
galvanic coupling between a surface particle and the matrix. The complex geometrical structure of a severe
corrosion pit is illustrated by the SEM micrographs in Fig. 1(b) and (c) of an epoxy replica of a typical severe
pit. The rounded features on the surface correspond to individual constituent particles, and indicate that the



pit evolved by progressive particle-induced dissolution through a cluster of particles. Thus, the size and
location of particle clusters is an essential component in the stochastic evolution of pitting. The purpose here
is to incorporate spatial statistics of constituent particles and clusters of particles into a simple mechanistically
based probability model for corrosion pit growth.

Polished sections of 2024-T3 aluminum alloy, the area of which was approximately 340 µm × 1030 µm, were
observed using SEM. In order to estimate accurately the particle geometry and clustering for the alloy,
observations were made on the LS, TS, and LT surfaces. One area was considered on each of the LS and TS
surfaces, but two different areas were observed of the LT surface. Subsequently, the same two areas about 20
µm deeper were analyzed on the LT surface. The average numbers of particles per mm2, with an area of at
least 0.5 µm2, were found to be 3850, 3820, and 3180 for the LS, TS, and LT surfaces, respectively. Detailed
properties for this alloy may be found in [1].

PARTICLE STATISTICS

Figure 2 is an SEM micrograph of an LT surface that is typical of polished specimens of 2024-T3 aluminum
alloy, and it illustrates the inherent randomness in the number, size, and location of the constituent particles. It
is impossible to describe adequately this complex spatial pattern from observations alone. Certainly, there is
no apparent spatial structure, and the need for modeling is manifest. Many different models have been
suggested for irregularly shaped and randomly distributed particles [10]. The primary concern herein is the
statistical description of particle clustering that reflects not only geometrical, but also electrochemical
considerations induced by deleterious environments. It has been shown, using spatial statistics, that the
constituent particles in 2024-T3 are statistically clustered [11], and that was confirmed for the material used
herein. Furthermore, it has been demonstrated that corrosion pits are statistically, regularly spaced because
pitting encompasses several clustered particles [11].

One of the key random variables (rvs) for the ensuing probability computations is the particle area Ap. The
cumulative distribution function (cdf) for Ap was estimated from the observation of over 7,000 particles. The
truncated two-parameter Frechet cdf, given by
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Figure 2: Typical SEM micrograph of a polished section of the LT surface of 2024-T3 aluminum alloy.
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Figure 1: SEM micrographs – (a) particle induced corrosion pit; and epoxy replica of a severe corrosion pit:
(b) plan (bottom) and (c) side (elevation) views relative to the original pit in a 2024-T3 aluminum alloy sheet
[1,6,8].
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where α is the shape parameter, β is the scale parameter and δ is the maximum value, was fit using maximum
likelihood estimation (MLE) [12]. This Frechet cdf was selected because it characterizes the maxima of rvs.
Since the largest particles induce the most severe damage, it is preferred. Furthermore, the geometrical
features of the material necessarily have an upper bound. The Frechet MLE estimates are acceptable for the
data with a confidence level of 99%, based on the Kolmogorov-Smirnov (K-S) goodness-of-fit test [12].
Using the likelihood ratio test [12] with a confidence over 97.5%, the six data sets may be merged, which is
evidence that Ap for each surface is statistically similar. The estimates for the merged data for Ap are as
follows: α̂  = 2.0, β̂  = 5.1 µm2, δ̂  = 285.7 µm2, µ̂  = 5.8 µm2, and vc ˆ  = 52%, where µ is the mean and cv is
the coefficient of variation. Note that the scatter is large, which indicates extensive variability in particle sizes.

MODELING THE CLUSTER SIZE FOR CONSTITUENT PARTICLES

It has been demonstrated that the galvanic current induced from a particle subjected to a deleterious
environment has a “throwing power” radius that can be approximated by map, where m is an appropriate
multiple ranging from 2 to 4 [13] and ap is the particle radius. If additional particles are within that distance,
galvanic dissolution will continue, thus propagating pitting corrosion. Herein, two particles are considered to
be in the same cluster if the distance between their centroids is less than map. Consequently, the cluster size is
estimated by counting the total number of particles npc that satisfy this pair-wise criterion. In order for a
severe corrosion pit to form, npc must be sufficiently large to sustain the galvanic dissolution needed for pit
growth. It is assumed that npc ≥ 4 is reasonable, and empirically such an assumption matches statistical
observation quite well. Figure 3 shows the centroid for each particle in Fig. 2. The polygons shown on the
figure are schematic approximations for the effective area of each cluster according to this criterion for which
m = 3 and npc ≥ 4. The cluster areas exhibit considerable scatter. Since each point is sized equally, the figure is
somewhat deceiving. Also, the polygons are rough approximations for the cluster area. Refer to Fig. 1 for a
typical cluster. Again, the cdf of Eqn. 1 is a very good characterization for the particle cluster radius apco,
which is another critical rv for the probability analysis. All six sets of cluster radii are very tight, and they may
be merged according to the likelihood ratio test for any confidence greater than 70%. Thus, apco for the LT,
LS, and TS planes may be considered to be statistically identical with parameters of α̂  = 1.8, β̂  = 14.3 µm, δ̂
= 42.2 µm, µ̂  = 14.4 µm, and vc ˆ  = 50%. Based on the K-S goodness-of-fit test, any confidence greater than
70% is appropriate for the fit. The large vc ˆ  for the clusters is confirmed graphically on Fig. 3.
Given the clustering criterion, the number of particles per cluster npc is well characterized by the discrete
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Figure 3: Schematic representation of the particle centroids and clusters for the LT surface in Figure 2.



Pareto distribution [14] given by
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with any confidence greater than 70% using the K-S test. The estimated parameters are ĉ  = 2.8 and ρ̂  = 1.7.
Since the cluster area is small, it is assumed that in its related volume the particle distribution is uniformly
distributed. Thus, the local volume particle density is assumed to be equal to the area particle density.

SIMPLIFIED MODELING OF CORROSION PITTING

Plausible models for particle induced pitting have been explored [14]. A simplified model for pit growth was
adopted and used, with success, in exploring the implications of pitting corrosion on the evolution of
corrosion and fatigue damage in high-strength aluminum alloys and in aircraft that had been in long-term
commercial service [4,15]. Although there is ample experimental support for this model for characterizing
pitting corrosion around an isolated particle, or a small cluster of particles at the surface, its extension to
describe the development and growth of a severe corrosion pit is problematic. The pitting current cannot be
constant, as assumed above; it must reflect the galvanic dissolution of the alloy matrix through its coupling
with the entire cluster of constituent particles that are progressively exposed by pitting [13]. The model
envisions pit growth to be sustained by galvanic current from a small group of constituent particles that are
exposed at the surface to initiate pit growth.

For simplicity, the model assumed the pit to be hemispherical in shape, with radius a, and its growth would be
at a constant volumetric rate, obeying Faraday’s law. Specifically, the pit volume is V = (2/3)πa3. The rate of
pit growth is given in terms of Faraday’s law, and the time evolution of pit size and the time required to reach
a given pit size are determine from direct integration of the rate equation, and are as follows:
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where M is the molecular weight; Ipit is the pitting current; n is the valence; ρ is the density; F is Faraday’s
constant (9.65 × 107 C/kg-mol). For aluminum, M = 27 kg/kg-mol; n = 3; and ρ = 2.7 × 103 kg/m3. For
particle induced pitting, Ipit is defined by the cathodic current density that can be supported by the cluster of
particles and their effective surface area.

Explicitly, Ipit is assumed to be given by the following:
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where (ico)i is the limiting cathodic current density for particle i, ipip Aa )2()2( 2 =π  is the surface area of

particle i that is exposed to the electrolyte within a growing pit at time t, and npc is a rv for the number of
particles that are exposed on the surface of a hemispherical pit of radius a at time t. The exposed portion of a
cluster includes all of the constituent particles at the pit surface. Pit growth is sustained by the galvanic
coupling current between the matrix constituting the pit surface and the exposed particles. Even though the
particle composition and electrochemical conditions evolve for each particle in a pit, (ico)i for i ≥ 1 are
assumed herein to be identically distributed and are taken to be constant for simplicity.

Integrating Eqn. 3 leads to the following for the time evolution of cluster induced corrosion pitting:
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where apco is a rv for the initial pit size, i.e., the size of the initiating cluster of particles.

COMPUTATIONS, COMPARISONS, AND DISCUSSION

The rvs that play a key role in the following mechanistically based probability computations are (ico)i, apco, npc,
and (Ap)i. The limiting values of (ico)i depend on the composition of the particles and the electrochemical
conditions within the pit, and it can range between 40 and 600 µA/cm2. To estimate the influences of particle
composition, solution acidification, dealloying and copper deposition, µ̂  = 200 µA/cm2 and vc ˆ  = 52% were
assumed for (ico)i throughout; see [7,8]. The statistical properties of the other rvs were given above. In order
to validate the model, computations were made and compared to experimentally measured pit depths that
were formed in 2024-T3 aluminum alloy sheet specimens after immersion in 0.5M NaCl solution for 16 to 384
h [13]. The measured pit depths are shown as a function of exposure time on Fig. 4. The lines are probability
percentile lines computed from the model given in Eqn. 5. The solid line is the median (50th percentile),
whereas the lines with symbols are the percentiles appropriate for the 80%, 90%, and 95% confidence bands.
The dashed line is the linear least squares regression through the data. The regression and median predicted
from the mechanistically based probability model are very close over the range of the data, which is reassuring
that the model has merit. The predicted lower confidence bounds agree well with the data. The deviation
between the lower bounds is small because the data for the rvs in Eqn. 5 are skewed toward the lower tails of
the cdfs. The 80% and 90% predicted upper bounds are also quite good; however, the 95% upper bound is
quite broad. The divergence in these upper bounds is attributable to the large scatter in upper tails of the data
for the rvs in Eqn. 5. In other words, in the upper percentiles of the data are very disperse and are
considerably larger in magnitude than the preponderance of the data. Furthermore, longer exposures to
deleterious environments may yield more variability than indicated by this data. Thus, additional
investigations, both modeling and experimental, are warranted.

The cdf for a given t also can be computed from Eqn. 3, and Fig. 5 shows selected cdfs plotted on Frechet
probability paper as t varies. For t = 0, the graph is the cdf for apco, which is truncated at the maximum 42.2
µm. The large variability in each cdf is evident, increasing with increasing t, which corroborates the broad
confidence bounds in Fig. 4. Also as t increases, the cdfs become nearly linear, indicating that a two-parameter
Frechet cdf, i.e. δ = 0, would be an excellent approximation for these cdfs.
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Figure 4: Pit depth data with the linear regression and 95% statistical confidence bounds and the median and
95% confidence bounds computed from the simplified pitting corrosion model.



CONCLUSIONS

A simplified probabilistic model incorporating the role of clustered particles on the growth of corrosion pits
has been presented and discussed. The proposed pit growth model includes the galvanic dissolution of the
alloy matrix through its coupling with clusters of constituent particles that are progressively exposed by the
pitting process. The merit of the model was considered by comparing model predictions to experimental data
from 2024-T3 aluminum alloy specimens that had been exposed to a 0.5 M NaCl solution. The model
predictions included estimations for the random variables that were obtained from independent measurements.
The predicted median evolution and 90% confidence bounds agree well with the data. The effect of
randomness in the number and sizes of the constituent particles and clusters of particles on pitting is quite
pronounced. Thus, the role of clusters of constituent particles is critical to the quality of aluminum alloys
subjected to deleterious environments. This effort provides a basis for a mechanistically based probability
model for reliability analysis in life-cycle design and management of engineered systems when corrosion is the
operative damage mechanism. Even so, additional pitting corrosion experiments and better modeling to
account for material anisotropy and volume effects are planned for the future.
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Figure 5: Evolution of the cdf for pit depth a.


