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ABSTRACT

In this paper, a one-dimensional discrete cohesive model is put forward to study the softening behaviour of
plain concrete beams. In particular, a block of beam bounded by two cracks is analysed, namely the “open
crack” (with variable crack width) and the “closed crack” (i. e.with virtual crack width). By means of this mod-
el, both the bearing capacity and the post-peak response of concrete beams can be evaluated, taking into ac-
count the effects produced on the softening branch by fictitious crack models and by fracture energy as well.
A good agreement between numerical and experimental results is obtained, with a fracture energy value higher
than the conventional ones.
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INTRODUCTION

In many papers plain concrete beams have been the object of direct experimental researches. Oladapo [1], for
example, inquired into the effects produced by different concrete mixtures on the mechanical behaviour of
bending beams with the same dimension. Moreover, the author [1] describes the two stages of the gradual pro-
cess of cracking in these beams (Fig. 1) as follows:

- The “Critical Stage” develops when the concrete tensile stress exceeds the strength /. (which is obtained
by means of direct tensile tests), in the portion of the beam where the bending moment M is greater than
the cracking moment M, . In this portion, a diffuse micro-cracking is present (Fig. 1a).

- The “Failure Stage” starts when the bending moment reaches the maximum value M, (Fig. 1b) (where
M./ M,=0.7+0.9). In this stage, a single wide crack usually appears.

Bosco et al. [2], have investigated on the so-called “size effect” of three point bending elements, by changing
the beam dimensions for the same concrete. The bending moment M-deflection 1 curves (Fig.1b) show an in-
crease in beam brittleness for the greater dimension of the beams. The softening branch of the “Failure Stage”
can be measured, even when a snap-back is present, if the loading process is controlled by a monotonically
increasing function of the time, like the crack mouth opening displacement (CMOD) [2]. For this reason, Giu-
riani and Rosati [3] built a testing machine able to set the maximum value of crack width w in a concrete block
in bending. In the literature, many theoretical nonlinear approaches for plain concrete beams have been pro-
posed. As is well-known, for quasi-brittle materials like concrete, the dimension of fracture process zone is not
small with respect to the beam's dimension. Therefore, nonlinear fracture mechanics (NFLM) models are need-
ed for concrete elements in bending [4,5].
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Figure 1: Plain concrete beam: a) three point bending test; b) possible M- curves.

In particular, the Mode I cracking phenomenon can be reproduced by means of two nonlinear models: the fic-
titious crack model (or cohesive model) and the crack band model. With the fictitious crack model, introduced
by Hillerborg et al. [6], the fracture process zone is represented through a crack line where the stress ¢ - crack
width w relationship is applied. The simplest application of cohesive model for plain concrete beams, is made
possible by means of the bidimensional Boundary Element Methods (BEM), i.e. the multidomain BEM [7] or
dual BEM [8, 9]. In this case, all the body volume remains linear elastic and the nonlinearity is included in the
crack line by the cohesive model. An alternative approach, is that of using bidimensional Finite Element Meth-
ods (FEM). With these methods, the cracking phenomenon is analysed in a “discrete” manner [6], changing
the initial mesh (remeshing).

With the crack band model, the inelastic strains of the fracture process zone are smeared on a band of appro-
priate length, located around the crack. Several crack band models were developed to study the cracking phe-
nomenon in concrete, not only for beams in bending. The so-called “smeared FEM”, for example, are able to
reproduce the mechanical behaviour of bidimensional structures, by considering concrete like a continuous
body by means of suitable stresses-strains 6-€ law [4,5]. In other models, the authors exploited some simplifi-
cations to study plain concrete beams in a one-dimensional way, in particular they analysed a restricted portion
of beam close to the main crack [10, 11]. It is also possible to reduce the observations to only cracked section
[12], where the application of limit strain analysis can be useful to define the analytical formulation of the max-
imum bending moment M, of the concrete beam [13].

PROPOSED MODEL

The bidimensional FEM approaches, discrete or smeared, are able to represent both stresses and strains also in
the uncracked parts of a plain concrete beam far from the cracked section. Structural response of bending
beams is usually calculated by a one-dimensional or sectional approach, thus the introduction of new one-di-
mensional models to study unreinforced concrete beams during the cracking phenomenon is justified. In the
previous sectional [12, 13] or block [10, 11] models, hypothesis and simplifications were introduced about
stress and strain distributions, so that is not possible to evaluate them in all the sections of the beam.

The proposed cohesive block model is able to define the structural response of cracked plain concrete beams,
through the computation of stress and strain distributions in a wide portion of beam delimited by a crack. It can
be considered an intermediate approach between the cohesive bidimensional FEM and the sectional models.
The problem can be solved by means of a one-dimensional model, by introducing a suitable simplified strain
profile for every cross-section of the beam. Cracking in plain concrete bending elements is characterized by
one main crack [1, 2, 3], called “open crack”, whose stress and strain profiles are depicted in Fig. 2a. The struc-
tural response of this section, with a plane crack, is evaluated with a trial and error procedure. In particular, for
a given value of crack width w and depth 4, (Fig. 2a), the position of the neutral axis x can be computed by
the static cross-sectional equilibrium condition. In this way, it is also possible to define the bending moment
M, the slope of linear strain profile and the corresponding stresses.
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Figure 2: Observed concrete block: a) stresses and strains in the “open crack™; b) strain profile within /, ;
¢) strains and stresses in the “closed crack”.

In the “Critical Stage”, when then bending moment is higher than the cracking one M, [1], in the concrete
block there is a diffuse micro-cracking, which can be reproduced, according to cohesive model, as “virtual”
cracks. In other words, besides the main crack, there are many cracked sections where the stresses could be
computed by means of “closed crack” model. As shown in Fig. 2c¢, the concrete stress is constant and equal to
the tensile strength f; within the crack length 4, . Stress and strain in a closed crack section could be computed
like in a continuous body, if the strain profile develops on two different planes 7, and &, (Fig. 2c). The stress
and strain analysis for a block delimited by the open cracked section and by the closed one (Fig. 2), allows to
calculate the distance /, between the two sections, which is an unknown of the problem. In a generic section
within /, , the strain profile lies on the planes m; and m, (Fig. 2b). In particular, both the slope of m, and the
depth d(z) of m; increase when shifting from the main crack (Fig. 2a) to the closed crack, where T, is vertical
and d(z) is maximum. At distance y from the bottom of the beam, the crack width w(y’) due to the strain differ-
ence Ag(y, z) measured on the two planes along /, , can be computed through the following integration:

la
w(y) = JO Ae(y, z2)dz (1)

Based on this strain hypothesis, also supported by the experimental analysis [1, 3], it is possible to found an
horizontal tangent in the function d(z) near the tip of the main crack. In the case of constant bending moment
M, d(z) shows an horizontal tangent also near the tip of the virtual crack (Fig. 3a).

Broms [14] supposed that the maximum concrete tensile strain, in reinforced concrete elements in bending and
tension, is localized inside a circle whose radius corresponds to the crack length and whose centre is on the
reinforcement axis. Outside this circle, compressive or small tensile strains are present. By means of an ana-
logy with this strain diffusion hypothesis, d(z) could be considered as the zone where compressive or small
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Figure 3: Observed concrete block: a) function d(z) along the block; b) a cohesive model.



tensile strains are located, as shown in Fig. 3a by the thick line tangency at the tips of the open and closed
cracks. Indeed, d(z) is a function drawn on two tangency circles: the first circle has the centre on the bottom of
the cracked section and its radius R, is the crack length 4, ; the radius R, of the second circle is the length of
the virtual crack %, and the centre of this circle is distant R, + £, from the bottom of closed crack section. In
the “Failure Stage”, when M < M, , the virtual crack vanishes (4, = 0 in Fig. 3a) and it possible to observe only
the presence of the main crack, with one circle in the open crack section [14]. Moreover, the distance between

the open crack section and the closed one can be computed through the following equation:

1, = J(hy+h,)*+4(hy) 2)

For the plain concrete beam of Fig. 1, whose constitutive laws for the uncracked concrete and the cohesive
model (Fig. 3b) are known, the relationship M-n can now be obtained as the maximum width w of the open
crack section increases, by means of the following trial and error procedure (Fig. 3a):

. select a crack width w ;

. assume a value of crack length 4 ;

. compute, in the open crack section, the bending moment M ;

. compute, in the closed crack section, the crack length 4, ;

. compute /, according to equation (2) ;

. compute Ag(y, z) within /, ;

. if the equation (1) is not verified, with a new trial value of 4, , go back to step 3.
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For an imposed value of w in the main crack, this procedure yields the stresses and strains in a concrete block
of length /, , as in a bidimensional finite elements analysis. According to Bosco et al. [2], the loading process
is controlled by w (a monotonically increase function), so that the possible positive slopes of the softening
branch (in M - 1 curves), during the “Failure Stage”, can be computed. Moreover, in this way, both the distance
[, between the cracks and the length 4, of the main crack increase monotonically, and in particular, at the end
of “Failure Stage”, they are both equal to the height H of the beam.

COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL RESULTS

Before testing the validity of the proposed model, it is necessary to define the two constitutive laws of the con-
crete. According to [4, 7, 12], a linear elastic stress strain relationship for the uncracked concrete is assumed
(Fig. 4a). In this relationship, £ represents the modulus of elasticity, £, and f are respectively the compressive
and the tensile concrete strength. As is well-known, a cohesive crack model valid for all the concretes does not
exist [4]. In fact, many 6-w curves were obtained for particular concrete with a limited number of experimental
data. For the plain concrete beam in Fig. 1, the M-n response is strongly depending on the cohesive model
adopted. As shown in [15], where a bilinear 6-w is used, the maximum bending moment A, depends on the
slope of the first part of the cohesive law, while the last part of 6-w influences the softening branch of the “Fail-
ure Stage”. Moreover, if the fracture energy Gy, 1. e. the area under the 6-w curve (Fig. 3b), were kept constant,
both the “Critical Stage” and the “Failure Stage” of M-n should be different.
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Figure 4: Constitutive laws: a) linear elastic law for uncracked concrete; b) cohesive bilinear model [16];
¢) cohesive trilinear model [17]; d) cohesive exponential model [18].



Cohesive models adopted

In order to define the structural response of a plain concrete beam, in this paper the results obtained with three
different fictitious models are compared. The bilinear model [16] (Fig. 4b), the trilinear model [17] (Fig. 4c)
and the exponential model [18] (Fig. 4d) have been used. Usually, the practitioners do not know the ¢-w rela-
tionship: they simply set the compressive strength £, and the maximum aggregate size ®,,,, . For these reasons,
the adopted cohesive models, with the exception of the exponential model [18], depend on £, and @, .

Numerical analysis of the Giuriani's and Rosati's beam [3]

As a first approach, our numerical results and the experimental ones, obtained by Giuriani and Rosati [3], are
compared. The Authors, concentrated in the cracked section of a concrete block (Fig. 5), where they imposed
the maximum crack width w and measured both the crack depth £, and the bending moment M. In particular,
the crack growth were measured by means of geometric moiré. By introducing the cohesive laws reported in
Fig. 4, the proposed model is able to evaluate, for the cracked section in Fig. 5, both the bending moment M -
crack width w and the bending moment M -crack depth 4, curves. In Fig. 6, the numerical and experimental
M-w and M-h,, diagrams are compared. In Fig. 6c, the proposed model calculated with the trilinear 6-w law,

H=250 mm

B=50 mm

L=500 mm

E.=32300 N/mm?

f,=40.86 N/mm?

LN f1=3.14 N/mm? (estimated in [10])

Dmax =15 mm

Figure S: Giuriani's and Rosati's beam [3].
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Figure 6: Comparison between experimental and numerical results: a) cohesive bilinear model [16]
G¢= 8.0E-2 N/mm; b) cohesive exponential model [18] Gy= 8.0E-2 N/mm; c) cohesive trilinear
model [17] G¢= 1.9E-1 N/mm; d) cohesive bilinear model [16] G¢= 1.9E-1 N/mm.



provides the best fitting of the experimental measurements. In this case, the fracture energy Gp= 1.9E-1 N/mm
(which is function of £, ) is far greater than the value adopted for the bilinear and the exponential fictitious crack
model (Fig. 6a and Fig. 6b, respectively), where Gy=8.0E-2 N/mm was estimated according to CEB Model
Code [16]. As pointed out in [8] for the experimental results [2], if in the bidimensional BEM analysis Gy were
higher than the conventional measured value, numerical results should be closer to the experimental ones. To
confirm this observation, Fig. 6d shows a good agreement between the numerical and experimental results also
for the bilinear model [16] with the higher G¢.

CONCLUSIONS

Due to limited number of comparisons with the experimental data, it is not possible, at the moment, to give
general rules about plain concrete beams behaviour. Results obtained with the proposed model show a good
agreement with the experimental ones [3], only when the fracture energy is higher than the conventional meas-
ured or computed values. In these cases, the proposed model represents an effective alternative to the classical
bidimensional BEM and FEM analyses. Moreover, this model is able to define the better 6-w relationship to
model the reinforced concrete beams, whose structural response depends both on the fracture mechanics of ten-
sile concrete and on the bond between steel and concrete [19].
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