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ABSTRACT

The influence of an electric field upon the fracture toughness of ferroelectric ceramics has been observed
by many researchers. Our investigations deal with the calculation of ferroelectric/ferroelastic domain
switching events near the tip of an electromechanically loaded crack. The calculations are based on a
semi—analytical solution of the piezoelectric field problem yielding electric and mechanical fields around
a crack tip. By means of a switching criterion, the specific work is related to a treshold value, deciding
upon location and species of switching events. The thus determined extension of the fracture process
zone is the basis for calculating changes in the fracture toughness due to domain processes. On this
basis the influence of electric loads is investigated and results for two different orientations of material
poling are presented. If the crack faces are aligned perpendicularly with the poling direction a positive
electric field enhances the Mode-I fracture toughness. In the case of crack faces beeing orientated along
the material poling axis the Mode-I fracture toughness is scarcely influenced by an external electric
field, whereas the Mode-II toughness is strongly affected.
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INTRODUCTION

Piezoelectric and ferroelectric ceramics find an application as actuators, sensors or ultrasonic transducers
in many fields of technology. Because of their brittleness, problems of strength and reliability have to
be major subjects of investigation. For the fracture analysis of smart ceramic structures a fracture
criterion is needed, which relates relevant fracture quantities to the material toughness values, deciding
on whether a given crack grows or not. In fracture mechanics of piezo— and ferroelectric solids, such a
fracture criterion is not known yet. Within the scope of the K—concept, the loading of the crack tip can
be described by the three classical stress intensity factors K;, K;; and K;;; and an additional electric
intensity factor Ky representing the singular behaviour of the electric displacement D; in front of the
crack tip [1]:
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A fracture criterion on the basis of the K—concept should be formulated by one single quantity K 4,
being a function of the K—factors including Kjy. This quantity, representing the applied loading of



a fracture criterion equation, has to be compared to a material inherent critical value, the fracture
resistance K. However, there is experimental evidence [2], that the critical value on the right hand
side of the equation is a function of the electric field E; and the poling direction P;. It is assumed to be
sufficient if only mechanical stress intensity factors are considered on the left hand side of the fracture
criterion. The effect of an electric field is included in the material function on the right hand side and
in the mechanical stress intensity factors by piezoelectric coupling. The fracture criterion is supposed
to be

K4(E;) = K¢ (Ei, B) (2)

The micromechanical model, presented in this paper, has been developed as a tool to investigate the
material function K¢ (FE;, P;). Calculations also based on a micromechanical model recently have been
published by Zhu and Yang [3,4]. In their work, piezoelectric field coupling is not considered, though.

CLOSED FORM SOLUTION FOR A CRACK IN AN INFINITE PIEZOELECTRIC

To find the eigensolutions of a piezoelectric material, the displacements u; and electric potentials ¢ are
represented by the function [5]

w= ()= (4) FE =45 =it ®)

which assumes the two field variables to depend on the coordinates x; and z5. Since derivations with
respect to w3 vanish, the strain tensor component €33 and the component of the electric field vector
E3 = ¢ 3 are zero. The problem to be solved is governed by the following system of equations, which is
derived from the field equations of linear elasticity and electrostatics as well as the constitutive equations
of piezoelectricity:

Cijkt U ji + €t ¢51 =10 (4)

€ikl Wk — Kig @i =0
The elastic, piezoelectric and dielectric material constants are represented by the tensors Cjju, e;j
and k;. In Eqn. 4 volumetric forces and charges are neglected. Inserting Eqn. 3 into Eqn. 4 yields a
generalized eigenvalue problem revealing A,, and p as eigenvectors and eigenvalues, respectively. With
the exception of x3 beeing the material poling axis, which means that the z; — x5 plane is the plane
of isotropy, all four eigenvectors are linear independent. Thus, in Eqn. 3 the summation over all linear
independent eigenvectors and —values can be introduced to be inserted subsequently into the constitutive
law of piezoelectricity. Furthermore, introducing a stress function x; (xi1 = 042, Xi2 = —0i1) and an
electric displacement function 6 (0, = D,, 6, = —D;) and integrating with respect to z finally yields

(I)m — |: >g :| - Mma fa(za) + Mma fa(za) (5)
with the matrix
M. — (Ciok1 + Cizk2 Pa) Aka + (€1i2 + €252 Pa) Ada (6)
me (€2k1 + €262 Pa) Aka — (K21 + K22 Do) Ada

Bars denote conjugate complex quantities. Eqn. 5 represents the general solution of the piezoelectric
field problem. The solution of the crack problem is found adapting the function f,(z,) to the boundary
conditions of a Griffith crack with electrically impermeable and mechanically traction free crack faces.
Furthermore, the crack faces, oriented parallel to the x;—axis of the crack coordinate system, are assumed
to be free of electric charges. The external loads are accounted for by T,,, = [053, 055, 055, D3°] comprising
the stresses o7y and electric displacements D3¢ at infinity.

The function f,(z,) can be determined applying a Fourier transformation. Finally, two sets of dual
integral equations are obtained which are solved following Pohanka and Smith [6]. After resubstituting
the stress and electric displacement functions x; and @, the results for stresses and electric displacements
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${..} denotes the real part of a complex quantity, Ny, is the inverse of My,. In Eqn. 7 the coordinates
x; (involved in the function z,) are normalized with respect to the half crack length a.

CALCULATION OF FERROELECTRIC/FERROELASTIC SWITCHING ZONES

In the z;-x, plane it has to be distinguished between three different kinds of switching events. A
tetragonal unit cell can switch 90 degrees clock— or anti—clockwise (£90°) or it can switch 180 degrees
(180°). Switching events with a resulting orientation of the c-axis in the z3—direction i.e. parallel to the
crack front are not under consideration. If ¢ is the angle between the c—axis of a unit cell and the crack
faces, the change in polarization going along with a switching event can be described by the vector

5_ppo( sn(@+e)
AP=bP (_COS(¢+¢)> (8)
—/2 for +90° +mr/4 for +90°
b= V2 for —90° , p=1% —n/4 for —90°
—2 for =£180° +m/2 for +£180°

with the amount of the spontaneous polarization of a unit cell P°. The specific electric work, which has
to be supplied for the switching is calculated from

We = /EWZ dDZ ~ EZ APZ (9)

The approximate solution of the integral is based on the assumption, that the electric field E; remains
unchanged in the course of the switching process. This implies, that the material constants are not
influenced by the switching. Therefore the calculations have to be seen as a first order approximation.
Furthermore in Eqn. 9 it is assumed, that the change in the electric displacement is dominated by the
ferroelectric/—elastic switching, linear piezoelectric contributions are neglected.

Corresponding to the polarization switch vector of Eqn. 8, the change in strain due to the switching
can be described by the tensor

- cos2¢  sin2¢ . _c—a
A€ = —€p ( sin2¢ — cos2¢ > ’ ‘D= ag (10)

The parameter e¢p contains the constants of the tetragonal and the cubic lattice a, ¢ and ag. In the case
of a 180° switching event €p is zero, since this species doesn’t go along with a change in strain. The
specific mechanical work, which has to be supplied for the switching is calculated from

Wm = /Uij dﬁij ~ Oij AQJ' (11)

accounting for the same assumptions as in Eqn. 9. A simple switching criterion can be derived from
Eqns. (9) and (11) relating the sum of specific mechanical and electric works to a treshold value, that
approximately represents half of the area of a polarization hysteresis

0ij Ae;j + E; AP, > 2 EcPY (12)

The coercitive field is denoted by E¢. Eqn. 12 was first used by Hwang et al. [8]. It neglects contributions
of grain boundary and domain wall energies [9]. The switching criterion has to be applied seperately
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Fig. 1: Process zones for poling perpendicular (left) and parallel (right) to the crack faces

to the possible switching events, i.e. £90° and 180°. For 180° events the first term in Eqn. 12 vanishes.
Consequently, 180° switchings cannot be caused by mechanical fields. By means of the switching criterion
it is decided, which one of the three events could occur at an arbitrary point in the z; — xo—plane. If
there are several possibilities, the one variant will be chosen, which goes along with the highest amount
of switching work. Stress tensor and electric field vector are inserted from the analytical solution for a
crack, Eqn. 7, taking into account the constitutive law of piezoelectricity. Thus, a nonlinear algebraic
equation for the determination of the switching zone boundaries is obtained. The union of the 4+90°
and —90° zones is considered as the ferroelectric/—elastic fracture process zone, since it influences the
fracture process by producing additional strain. There may be 180° switching events which dominate
over possible +90° events. Boundaries of the process zone being caused by an intersection of 180° and
+90° regions are calculated equating the switching energy densities of £90° and 180° events:

Uij AG?;QO + Ez A])i:i:QO = Uij AG};O + Ez A.PZ-ISO (13)

Fig. 1 shows process zones for two different poling directions. The origin of the polar coordinate system
coincides with the crack tip, the radius r is normalized with respect to the half crack length. The crack is
coming from the left side with the crack faces lying at 8 = 180°. In both diagrams three different electric
loads are superimposed with a mechanical Mode-I loading. All calculations have been performed with
the material constants of bariumtitanate. The electric loading is controlled by D3, only. Df°, like e.g.
o7} results in a nonsingular, homogeneous electric displacement field and therefore is not relevant for
fracture mechanics. E5° is approximately proportional to D5° and can be converted by the corresponding
dielectric constant. Therefore, in Fig. 1 the electric loads are measured in multiples of the coercitive
field intensity (Ec = 200 V/mm). Fig. 1 shows, that the process zones for a poling perpendicular to the
crack faces are smaller than for a parallel poling. Furthermore, it should be noticed that the process
zones become asymmetrical if the directions of poling and electric loading are different as in the case
of a parallel poling.

INFLUENCE OF SWITCHING EVENTS ON THE FRACTURE TOUGHNESS

The inelastic strain, caused by the £90° switching events, can be interpreted as a residual strain thus
leading to an additional loading or unloading of the crack. Its influence can be described by an additional
stress intensity factor AK, which is defined as
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The integration is performed over the boundary S of the process zone where the stresses ¢; act due
to a restraint of the residual strain. Eqn. 14 has been applied by McMeeking and Evans [10] to the
investigation of transformation toughening. The function h; describes the influence of a unit force in
the crack tip near field on the stress intensity factors. Applying the method of complex stress functions
for isotropic, elastic materials the effect of a force F; = [Q, P]" is found [11]

_— +1P —Kk— ) + — 15
\/27T /i+1 {(Q )(w/ZO \/ZO> 220\/,20 ( )
acting at the location zy = x19+1 29 (conjugate complex Zy). For plane strain conditionsitis k = 3—4v

with Poisson’s Ratio v. Separating real and imaginary parts and taking into account the relations
K; = F;h! and K;; = F; h!!, we find in polar coordinates (r,6):
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Here, r = |z| denotes the distance of the applied force from the crack tip. Biickner [12] interpreted Eqn.
16 as weight function, that’s why h; is often referred to as Biickner’s weight function. For the Mode-II
weight function it is found from Eqn. 15:

0 0
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2V2rr(1 —v) coS (5> (1 — 2v — sin 3 sin (32 >>

In Eqn. (14) the stress vector can be replaced by the stress tensor using Cauchy’s Theorem ¢; = 0, n;.
Applying Hooke’s Law, the stress tensor is expressed by the strain tensor, whereby the condition of
isochoric deformations was taken into account(e; = 0):

v E
—V <€z’j + E € 51]) =€ (18)

K=K;—iK=

i = 1+v
The strain tensor represents the additional strain, therefore being replaced by Ag;; from Eqn. (10). Eqn.
(14) thus yields

E E
AK = —— — j{Aeij hinjds = H—V/qu hi; dA (19)

The domain integral, which has been used for all calculations, is introduced using Gauf)’s Integral
Theorem. F and v are effective constants of an isotropic model material, which have to be calculated
from the anisotropic elastic material tensor. Using polar coordinates, the integration with respect to r
can be carried out analytically.

To take into account a statistical distribution of local unit cell orientations ¢ around the macroscopic
poling angle ¢g, a probability density function w(¢) is introduced. Inserting Eqns. 10 and 16 (17) into
Eqn. 19 supplies an equation for the calculation of AK; (AK,;). For AK; it is for example

K =— 4\/%@1_% //\/7 {cos (2¢— —> — cos <2¢— %)] o w(g)dé  (20)
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R(#) denotes the radius of the process zone boundary. If the crack grows by an amount Aa, the switching
zone is also extended along the crack faces. If we assume, that no back switches occur in the course of
the crack growth, there will be a homogeneous switching zone with the height of the original process
zone (Aa = 0) enclosing the crack. In front of this background, R—curves can be calculated. Then the
effective fracture toughness K@ is of interest:

Po=Kip—AK;; Ko =Kl — AKy; (21)
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Fig. 2: Fracture toughness for poling perpendicular (left) and parallel (right) to the crack faces

It is the difference between a hypothetical (pure mechanical) fracture toughness at the crack tip K%’,
K" neglecting switching effects, and the additional loading (AK > 0) or unloading (AK < 0) of the
crack due to switching events, which is calculated from Eqn. 19.

Fig. 2 shows R—curves for the two poling directions depicted in Fig. 1. The crack length is normalized
with respect to the largest extension w of the process zone perpendicular to the crack faces. Material
constants and loading conditions are the same as in Fig. 1. In the left plot, the shape of the R—curves
looks like expected. The calculations are based on a statistical distribution of the polarization angle with
a maximum deviation from ¢, of 30° and a Heaviside function as probability density function. K}ip was
assumed as 2.65 MPa m'/2. The screening effect AK; = —AK ¢ obviously can be positive and negative.
The Mode-I fracture toughness increases with increasing electric loading, AKj; is zero. The influence
of electric fields shown in the diagram could be confirmed performing experiments on DCB specimens
[2]. In the case of a parallel poling (right plot), little influence of the electric field can be observed for
AK ¢, although the sizes of the process zones differ much. The reason lies in the fact, that around the
crack tip within the section between 70° and 140° (Fig.1) the contribution of switching events to AKj¢
changes its sign. So, a growing process zone produces both positive and negative contributions. The
reason for the maximum in the R-curves is similar. When the crack starts growing it first passes the
region of a positive contribution leading to a marked rise of AK;c. During the crack growth negative
contributions are produced leading to the maximum. In contrast with the case of perpendicular poling,
there is a finite AK ¢ for parallel poling in connection with electric loads due to the asymmetry of the
process zones. However, the amount of AKj;¢ is smaller than the amount of AK¢.
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