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ABSTRACT 
    
The treatment of perfectly bonded interface between the particles and matrix of composite is sometimes 
considered to be inappropriate in describing the physical nature. The effect of imperfect interface on the 
overall behavior of particle-reinforced composites is studied. In order to investigate the detrimental effects 
of the slightly weakened interface on the overall material properties, a rigorous constitutive model was 
schemed, which uses a self-consistency scheme based on the Eshebly’s equivalent inclusion method, and is 
capable to reflect the meso-local damage effects even in the range where the volume fraction of particles is 
high. Both the tangential and normal discontinuities at the interface are independently modeled, and these 
relative displacements are directly proportional to the corresponding components of tractions at the 
interface. The numerical results are also shown. It is found that the imperfect interface conditions of  
debonding and/or sliding give detrimental effects on the overall properties of composites. Thus, the 
establishment of the most appropriate model describing properly the meso-local phenomena. 
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INTRODUCTION 
 
The inhomogeneity problem has received considerable attention since Eshelby[1] published his well-known 
paper on the treatment of ellipsoidal inclusion. Based on the Eshelby’s equivalent inclusion model, quite a 
few works have been performed, which assume perfect bonding at the interface between the inhomogeneity 
and the matrix. However, the solutions of perfect bonding condition have not been considered to be 
sufficient in describing the mechanical properties of the meso-local inhomogeneity problem of situations 
involving debonding and sliding. It is obvious that the interface conditions dramatically affect the 
mechanical behavior of the composites. Therefore, there have been considerable interests in imperfect 
interface problems as may be appropriate in the case of either pre-existing defects or interface damage due 
to, for example, the cyclic loading. The most popular model for quantifying this imperfection is the linear 
spring-layer model, in which a relationship at the interface between the traction vector and the displacement 
jump is assumed. This model of the linear interface has been employed by Hashin[2,3], Qu[4,5], 
Zhong[6,7], and Gao[8] among others in the development of the relevant problems. One of the interesting 
works in this area is by Gao[8], who has modeled the circular inclusion in the matrix imperfect interface 
under a uniform tension to find the equivalent eigen strain values. In meso-mechanics of solids, elastic 
solutions to the inhomogeneity problem are often used to relate the overall deformation and the 
corresponding stress field in the composites. In this paper, an Eshelby tensor, is derived accounting for the 
mechanics of the imperfect interface. The Eshelby tensor is averaged over the entire area of an inclusion to 
obtain the average effect that is concerned for evaluating the overall properties of composites. On the local 
study inside and around an inclusion, a constitutive law that accounts for the meso-local imperfection, 
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based on a self-consistent scheme is developed, which applies the Eshebly’s equivalent inclusion method to 
the particle-matrix domain, thus an averaged compliance was determined rigorously. The present 
constitutive modeling was carefully devised to be capable of reflecting the effect of slightly-weakened 
interface on the overall properties of the composites, even in the range where the volume fraction of 
particles is high. 
 
 
MODELING IMPERFECT INTERFACE 
 
As pointed out by some researchers, the conditions of initially perfect bonding at the interface between the 
inhomogeneities and the matrix sometimes may deteriorate. Boundary-sliding as well as debonding are 
normal phenomena seen after a period of service for some composites. Especially under cyclic loadings, 
defect and damage may occur on the particle-matrix interface. They would incur the imperfections of the 
interface. Consider a circular inclusion Ω embedded in an infinitely extended elastic domain (matrix) D-
Ω.  ∂Ω represents the imperfect surface area, as depicted in Fig. 1. The defected interface is modeled 
by a spring layer with its vanishing thickness. It is assumed that the tractions on the interface remain 
continuous (may not be equal to that of the perfect bonding case), but the displacements are not. 
Furthermore, the normal and tangential displacement-discontinuities on the interface are assumed directly 
proportional to the corresponding traction components. Then, the interfacial conditions can be expressed as 
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where, li denotes the unit outward normal vector of the interface∂Ω, the second order tensor ηij indicates 
the compliance of the hybrid spring layer at the interface, which is usually expressed as 

 jiijij lltnt )/1/1(/ −+δ=η .                              (3) 

In the above,δij is the Kronecker delta, the two scalars t and n represent the tangential and the normal 
stiffness of the spring, respectively.  
 
Gao[8] derived a solution to this problem by assuming an Airy stress functions for both the matrix and the 
inclusion. After the stress field inside of the inclusion was found, the total strain in the inclusion were 
derived using Hooke’s law. Then the Eshelby tensor is determined from the eigen strain so that the strain 
would be equivalently generated due to the corresponding part of the eigen strain. Since for evaluating the 
overall properties of the composite with the imperfect interface, only the average effect is concerned, thus 
the Eshelby tensor is defined such that 

   ∫ θ=
Ω

Ω
Ω
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The expressions of SM for circular inclusions are given in Appendix in detail. 
The effects of the imperfect interface on overall properties of composite have been taken into account by 
the use of the obtained average Eshelby tensor. Thus, the effective properties of the composite with 
imperfect interfaces can be obtained by further averaging the effect to multi-particle dispersed domain 
problem.

 
Fig.1 Schematic of particle with imperfect interface 
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Fig.2 Composite with imperfect interface and 
equivalent domain 



 
AVERAGING METHOD 
 
The macro-local average properties of a composite with the imperfect interface can be obtained more 
reasonably by employing the self-consistent compliance (SCC) method. Based on Eshelby’s equivalent 
inclusion theory, the stress and strain state of a virtual inclusion in the medium can be made equal to that of 
the real inclusion by imposing some proper amount of eigen strain to be solved. Mori and Tanaka[9] took 
the medium to be the matrix material, while later Mura[10] as well as Wu and Nakagaki[11] assumed it to 
be the averaged material of the composite. The latter is called the SCC model in the present report. It is 
assumed that a macro-local property of the composite with the inclusions with imperfect interface can also 
be treated by the same manner. Thus, the meso-local average stress and strain state as well as the properties 
of the macro-composite materials(Fig. 2). Following the approach used by Wu and Nakagaki (1999), and 
considering the present condition of the imperfect of interface, the equivalent relationship of stress can be 
expressed as in the following: 

)-+ˆ(ˆ)+ˆ( *acc εεεEεεE =2                               (5) 

The Bold type characters stand for a second or fourth order tensor. The subscript 2 indicates the variable is 
of the inclusion, and the superscript (^) indicates that the quantity is of an averaged value. 2  represents 
the material tensor for the inclusion material, 

E
Ê  is the average material tensor for the composite material, 

 stands for the average strain of the composite,  indicates the strain mismatch between the inclusion 
and the composite, and is the total eigen strain that is the sum of the eigen strain(ε ) for the material 
inhomogeneity and the eigen strain( ) due to the effect of the imperfection at the interface between 
particles and the matrix. According to the Eshelby theory and by considering the conditions of imperfect 
interface, we have, 

ε̂ cε
a*ε *

i*ε

ac S *εε = .                                      (6) 
The role of the Eshelby tensor in imperfectly bonded inclusion problems now assumes the effects of the 
material inhomogeneity and the imperfection, and the treatment of the rest is similar to the case of the 
perfectly bonded-inclusion composite problems. Substituting Eq. (6) into Eq. (5), the following will be 
found, 

εε ˆˆ
0

* EA=                                       (7) 

where,  

                        -1-1
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Here,  stands for the identity tensor of the fourth order.  I
The stress  in the inclusion can also be obtained as in the following, 2σ

02 σBσ =                                       (9) 

0)-(ˆ+ AISEIB =                                 (10) 
where,  is the average stress of the composite. σ0
Once determining the stresses in the inclusion phase, it is easy to establish the constitutive law of the 
composite as follows. 

00
ˆ σLε =                                       (11) 

BLBILL 21 )]-[ˆ ff +=                                (12) 
where 1  and 2  are the elastic compliances for the  matrix and the inclusions, respectively, L L L̂ is the 
global average compliance of the composite material, which is equal to the inverse of the global average 
property tensor Ê . Because the right hand of Eq. (12) contains the yet-unknown tensor Ê , the present 
scheme is of the self-consistent compliance(SCC) method. To solve those averaged values, an iterative 
algorithm is undertaken. 
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NUMERICAL RESULTS AND DISCUSSIONS 
 
In order to investigate the effect of imperfect interfaces on the overall properties of composites, and to 
verify the performances of the spring-layer model with the averaging theory, numerical analyses were 
conducted. The used values for the Young’s modulus and the Poisson’s ratio of the matrix material and the 
particles are such that:  

Matrix        =2.0Gpa, 1E 1ν =0.35 
E νParticles      =40Gpa, =0.18 2 2

Both the matrix and particles are assumed to be isotropic. The particles are spherical in shape. Two typical 
cases of plane problems, i.e. the plane strain and the plane stress were studied. 
 
Variation for volume fractions of particles 
Fig. 3 shows the computed equivalent Young’s modulus of the composite with the use of Eq. (12) under 
three conditions with imperfect interfaces: i.e. pure sliding, pure debonding, and combined sliding and 
debonding, under the plane strain condition. Normalized Young’s modulus defined by the following is 
shown for the variation of the particle volume fraction. 

  End =
ˆ E − E1

E2 − E1

                                  (13) 

The considered interface conditions are regulated the tangential and the normal stiffness of the spring, t and 
n.  In the present, either 0, 1, or ∞ is considered for these factors and denoted so hereafter, whereas the 
unit value of the sliding/debonding parameter is equal to the spring stiffness of the matrix material 
evaluated per unit area. The solid line indicates the case of the perfect interface. It is quite clear that all of 
the imperfect interface conditions give a detrimental effect to the composite stiffness, as expected. 
Furthermore, the perfect debonding(short-dashed line) is more detrimental than the sliding with no friction, 
where other parameters are unchanged. The totally debonding case, that is when both the tangential and the 
normal stiffness of these springs tend to zero, the rigidity of the composite will become lowest. But it 
should be noted that the stiffness of the totally debonnded case is still much higher than that of the void 
inclusion case. When the sliding and debonding parameters have certain finite values(e.g. t=n=1 in Fig. 3), 
the line will drop somewhere in between the two ultimate conditions of the interface. Another interesting 
result is that the detriment effect of the imperfect interface becomes greater as the volume fraction of 
particles gets larger. For instance, when f = 0.3, the equivalent Young’s modulus of the composite with the 
imperfect interface(totally debonding) is 79.2% of that of the corresponding perfect interface. While, this 
value will be approximately 76.1% when f = 0.7. Fig. 4 shows the similar results of Young’s modulus in 
case of the plane stress.  

Fig.3 Young's modulus of composite with
 various interface conditions(Plain Strain)
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Fig.4 Young's modulus of composites with
various interface conditions(Plain Stress)
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Effect of sliding and debonding parameters 
In order to investigate the effect of the two imperfect parameters in detail, i.e. sliding and debonding, on the 
overall properties of composite, two typical cases of only sliding and only debonding were studied. Fig. 5 
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and 6 show the results obtained for the plane strain case, with f =0.5. It is learned from these results that 
there is a range of transition in these imperfection springs for both the sliding and the debonding from the 
completely defective to the perfect interface. It is noteworthy that the range of the transition is spanned on 
approximately 0.1 to 10 for both the cases. 

Fig.5 Effect of sliding parameter on
          overall properties

Sliding Parameter (t)
0.001 0.01 0.1 1 10 100 1000 10000

Ef
fe

ct
 o

f S
lid

in
g[

E n
d=

(E
0-

E 1
)/(

E 2
-E

1)
]

0.0935

0.0940

0.0945

0.0950

0.0955

0.0960

0.0965

f=50%

Fig.6 Effect of spring parameter on
         overall properties
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Effect of sliding or debonding for particle volume fractions 
For investingating the effect of the sliding and the debonding parameters on the overall Young’s modulus 
with various particle volume fractions, the average Young’s modulus of the composite is normalized by that 
with perfect interface of the same volume friction of particles that, 

perfect

imperfect
nor E

E
E =                                 (14) 

Fig. 7 shows the results for the case of debonding for f = 0.3, 0.5, and 0.7. It is obvious that the relative 
detrimental-effect of debonding is more serious at higher volume fraction of particles. However, it is 
interesting to know that this is not the case for the sliding. Fig. 8 shows the results of sliding for the same 
selected particle volume fractions as in the previous problem. Unlike the debonding case, the sliding around 
the particle does not give marked effects to the macroscopic characteristics of the composite. The effect is 
small, but the sliding effect for the low volume fraction of the inclusion stands over that of the higher 
fractions. 

Fig.7 Comparison of effect of interface 
debonding for various volume fractions
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Fig.8 Comparison of effect of interface
         sliding for various fractions
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CONCLUSIONS 
 
The effect of imperfect interface on the overall behavior of particle-reinforced composites is studied. The 
interface is modeled as a spring layer with vanishing thickness. By assuming that,  (a) the tractions on the 
interface remain continuous, but (b) the displacements are discontinuous, and (c) the normal and tangential 
displacement-discontinuities on the interface are directly proportional to the corresponding traction 
components, an averaged solution of Eshelby’s S-tensor were obtained. This Eshelby tensor was applied to 
the carefully schemed Self-consistent Compliance model in order to develop the constitutive model for the 
composite incurring particle-matrix damages in the meso-mechanics level. The present model is used to 
investigate the effect of a slightly weakened interface. The following conclusions could be made by the 
numerical analysis. (1) The imperfect interface conditions give a detrimental effect on the overall properties 
of composites, where debonding is more detrimental than sliding. (2) The detrimental effect of the 
debonding interface is getting higher as the volume fraction of particles becomes larger. (3) Although the 
effect is small, the sliding effect in the composite is rather marked for the low volume fraction case of the 
inclusion than the higher fractions. 
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APPENDIX: THE MODIFIED ESHEBLY’S S-TENSOR 
 
S1111=S2222=Q1-Q2-Q3+1,  S1122=S2211=Q1+Q2+Q3,  S1212=-Q2-Q3 

Other Sijkl=0. 

where 
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21 /µµ=r  ki=3-4υi for plain strain,  and k=(3-υi)/(1+υi) for plain stress, i=1,2. 
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