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ABSTRACT 
 
Crack deflections by interfaces increase the apparent toughness of composites. Predictions are based on the 
comparison between the energy released during the crack growth along the interface or within the 
inclusions. We propose a review of our recent works in the topic. In a first step, using matched asymptotics 
and singularity theory, we exhibit a slightly modified form of the He and Hutchinson criterion. Next, an 
analysis of the residual thermal stresses leads to conclude that they have a little influence on the deflection 
criterion (but of course not on the further growth of the extensions). In a second step, we establish a 
revisited criterion, which deals with the excess of energy produced in some cases during the crack advance. 
Finally another mechanism is investigated: the interface is assumed to fail prematurely leaving initially an 
unbroken ligament between the primary crack tip and the debonded interface. Deflection results of the 
linking of the primary and the interface cracks. 
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INTRODUCTION 
 
Fibers or other inclusions are inserted in brittle materials to promote toughening processes [2]. Cracks 
growing within the matrix are expected to kink along the interfaces and either to blunt the primary crack tip 
or to develop dissipative processes by friction. In ceramic matrix materials it is an essential mechanism 
which limits matrix cracks path and delays the final ruin of the structure. An efficient criterion able to 
predict such crack deflection is of course essential to tailor these composites. An approach, proposed by He 
and Hutchinson [3] (HH), is based on the analysis of energy release rates at the tip of virtual crack 
extensions either deflecting along the interface or penetrating into the fiber.  
In a first step, using matched asymptotics and singularity theory, we propose a slightly modified form of the 
HH criterion involving the amount of energy that the primary crack requires to extend [11]. It emphasizes 
on the awkward role of the arbitrary extension lengths introduced in both models.  
Next, an analysis of the residual thermal stresses leads to slightly different conclusions than that of He et al. 
[4]. At the leading order, it is drawn that they have few influence on the deflection criterion (but of course 
not on the possible further growth of the extensions) [10]. 



Prior to these extensions, the primary crack is assumed to impinge on the interface. In some cases this is 
questionable because of the non-classical character of the singularity, it makes the primary crack growth 
easier and easier as it approaches the interface. Thus, in a second step, we propose a revisited criterion that 
deals with the excess of energy (with respect to the Griffith criterion) produced during the crack advance. 
Surprisingly, arbitrary extension lengths definitions are no longer necessary; it is obviously a noticeable 
improvement of the HH criterion although its formulation remains very simple [8]. 
Finally another mechanism, first suggested by Cook and Gordon [1], is investigated: the interface is 
assumed to fail prematurely leaving initially an unbroken ligament between the primary crack tip and the 
debonded interface, as observed by Lee et al. [6]. Deflection results finally of the linking of the primary and 
the interface crack. Necessary conditions to such a mechanism are derived. In particular, in case of a stiff 
matrix, interface debonding ahead of the primary crack is shown to be almost inhibited [9]. 
 
 
MATCHED ASYMPTOTICS AND THE GRIFFITH CRITERION 
 

 
Figure 1: The perturbed (a), unperturbed (b) and stretched domains (c). 

 
Matched asymptotics procedure is briefly recalled here. We consider a domain in which a corner is 
slightly perturbed by a flaw (a short crack, a small void,) with dimensionless diameter 

εΩ
ε  (figure 1(a)). The 

solution U ),,( 21 xxε
r

 to a plane elasticity problem in this domain can be expressed as 
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is solution to a similar problem but in the unperturbed domain  (figure 1(b)). This term 

is singular in the corner and expands as 
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r  and ϕ  are the polar co-ordinates; 10 <<λ  is the singularity exponent, it is solution to an eigenvalue 
problem and )(ϕur  is the associated eigenvector,  is the generalized intensity factor. The remaining part 

 is a smooth complement. For simplicity, we do not take into account multiple, complex or 
defective eigenvalues. Of course, the far field in eqn. (2), is valid out of a vicinity of the perturbation. To 
have information on the near field, one has to stretch the initial domain by 
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ε/1  and then consider the limit 
domain  as inΩ 0→ε  (figure 1(c)). The solution now writes  
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where  and ε/ii xy = ερ /r= . The particular form of the first term of the expansion is due to the matching 
conditions; it behaves at infinity like the first term of eqn. (2) near 0. There is an intermediate area in which 
both outer  (eqn. (1)) and inner (eqn. (3)) expansions hold. 



The Betti’s theorem allows expressing the change in potential energy between an initial (unperturbed) state 
and a next (perturbed) one 
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where generically denotes the stress field associated to U)(U

r
σ

r
. Γ  is any contour surrounding the corner 

and  its normal pointing toward the corner, it can be taken either in nr 0Ω  or Ω . Replacing the above 
expansions in eqn. (4) leads to the following relation 

in
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Clearly, K  depends on the shape of the perturbation but not on its actual size. Moreover it is independent of 
the applied loads, which appear in eqn. (3) only through the multiplicative coefficient k . 
This procedure will be used in the following with a new short crack or a short crack increment as a 
perturbation. From eqn. (5), the incremental expression of the Griffith criterion takes the Irwin-like form 
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CRACK DEFLECTION AT AN INTERFACE – THE HE AND HUTCHINSON CRITERION 
 

 
Figure 2: Penetration (a), single deflection (b), double deflection (c and d) of a crack at an interface. 

 
A crack lies in material 1 and impinges on the interface with another component denoted material 2 and the 
problem is to determine the crack path. As a consequence of eqn. (6) the difficulty is the following, if 
material 2 is stiffer than material 1 then 2/1>λ  and 0=G , and in the opposite situation 2/1<λ  and ∞→G . 
The usual differential form of the Griffith criterion is inappropriate. To avoid this obstacle, He and 
Hutchinson [3], using integral equations, compare the energy release rates G  and  (the differential 
form) respectively at the tip of a penetrated (figure 2(a)) and a deflected (figures 2(b), 2(c)) crack at a short 
distance  of the impinging point. From their analysis, deflection is promoted if 
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where the right hand side is the ratio of the interface and material 2 toughness  and . The left hand 
side arises to be independent of the applied loads and of the increment length .  
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Similarly  and (the incremental form) can be computed from eqn. (6). They correspond now to the 
energy released during the crack growth and the equivalent to eqn. (7) leads to [11] (LS) 
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where  and  are defined by eqn. (5) and correspond respectively to the penetrated and deflected 
geometries. Although they look similar, the two criteria are different. HH assume the penetration and 
deflection increment lengths and study the local fields at the tip of the new extensions. It is thus consistent 
to carry out the analysis at a same distance a  of the primary crack tip (figures 2(a), 2(b), 2(c)). On the 
contrary, in the present approach, the question is to determine the energy balance that allows creation of 
crack extensions. In this context, it is consistent to examine equal crack extensions. It makes an important 
difference in case of symmetrical double deflection along the interface. In the HH case the total interface 
debonding length is  (figure 2(c)) whereas it must be a  in present one (figure 2(d)). A comparison shows 
a good agreement between HH and LS criteria provided extension lengths are consistent. Nevertheless, there 
is no reason to take equal increments in both directions. But, otherwise the two criteria (eqns. (7) and (8)) 
become dependent on the ratio of the increment lengths that is unknown, making them questionable. It is 
discussed in a next paper by He et al. [4]. 
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THE ROLE OF RESIDUAL THERMAL STRESSES 
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Figure 3: The influence of residual thermal stresses on the deflection/penetration criterion. The vertical axis 

corresponds to the absence of residual stresses. 
 
In addition to the above discussion, He et al. [4] analyze the role of residual thermal stresses resulting of a 
cooling process. The problem can also be examined through the matched asymptotics procedure. As a first 
consequence, the generalized intensity factor in eqn. (2) splits in two parts 
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which are respectively the contributions of the mechanical  and thermal  loadings. Then the main role 
of residual thermal stresses is to modify the intensity factors, whereas the criterion (eqn. (8)) remains 
unchanged at the leading order from mechanical to thermal and to combined mechanical and thermal 
loadings. Residual stresses influence the load level at which the mechanism starts but not the mechanism 
itself. If secondary effects are accounted for, there is an additional term in the criterion [10] deriving from 
the generalization of the non-singular “T-stress” 
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where T  is a non-singular traction depending on the applied mechanical and thermal loadings and where 

 and  are coefficients similar to  and . This criterion involves explicitly the increment length 
. Moreover, it is non-local since it contains k  and 
pH

a
dH pK dK

T  which depend on the applied loads, on the 
processing temperature and on the geometry of the whole structure. T  itself splits in two parts 
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The mechanical contribution T  is omitted in the He et  al. [6] analysis. Figure 3 shows the trend of residual 
stress effects for two elastic contrasts between the materials. The dimensionless parameter 

m

ξ  is proportional 
to the thermal expansion coefficients mismatch, . When fiber is stiffer than the matrix, 
deflection is promoted if 

)( 21 ααξ −=c
0<ξ  (i.e. if ). On the contrary, if  the deflection trend is lowered by 

the residual stresses. Moreover, the influence is almost negligible in the opposite situation of a stiff matrix 
and a soft fiber. It must be pointed out that these conclusions concern the prediction of the crack branching, 
i.e. the very beginning of the process, they do not inform on the possible further growth of the extensions. 
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THE PARTICULAR CASE 2/1<λ  
 
In the above sections, it has been assumed that prior to any penetration or deflection, the crack impinges on 
the interface. This is questionable, especially when 2/1<λ , i.e. when material 1 is stiffer than material 2 as it 
is observed in reinforced ceramic matrix materials. Fibers are softer than the matrix and inserted only to 
promote toughening processes. Indeed, the energy release rate increases to infinity as the matrix crack 
approaches the interface (the Griffith criterion is more and more violated) and then decreases after 
penetration or deflection and finally drops below the critical toughness or  (at a distance a  or a  
known from eqn. (6)). Thus, the above assumption is not realistic. The kinetic energy  or  
produced by the fracture process before the energy release rate drops below the critical toughness can be 
estimated in the two cases [6] 
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where  is the kinetic energy produced before the crack reaches the interface. Thus we assume that 
deflection is promoted if  which corresponds to a principle of maximum decrease in total energy 
as suggested by Lawn [5]. It leads to a slightly different form of eqn. (8) 
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Which does not require the introduction of any arbitrary increment length. It is obviously a noticeable 
improvement of the HH criterion although the formulation remains very simple. 
 
 
INTERFACE DEBONDING AHEAD OF THE PRIMARY CRACK 
 
The premature failure of the interface can be invoked as another mechanism for crack deflection by an 
interface. It has been suggested by Cook and Gordon [1] and observed in many other situations [6]. The 
matched asymptotics procedure is particularly suited to study this situation. 
The interface debonds on a length  while the primary crack tip is at a distance  of the interface (figure 
4). The ligament is considered as the perturbation and is associated to the small parameter 
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expansions (  is any characteristic length of the structure). The coefficient L K  in (5) depends on the local 
geometry, then if we set ba/=µ , two coefficients  and )0(K )(µK  arise respectively from figure 4(a) and 
4(b) and the change in potential energy between the two states (prior and after debonding) writes 
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Figure 4: Interface debonding ahead of the primary crack. 

 
The competition between the debonding and the primary crack growth within material 1 (without 
debonding) can be analyzed. It involves of course the material 1 toughness . It is shown in [9] that early 
interface debonding is promoted if  
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)(µg  is plotted in figure 5 for different contrasts between the components. When there is no contrast (figure 
5(b)) or when material 1 is stiffer than material 2 (figure 5(c)), )(µg  has a maximum  such that if 

, then the interface cannot debond prematurely. For high contrasts , this maximum is 
very low and the early debonding process is almost inhibited except for very weak interfaces. On the 
contrary, when material 2 is stiffer than material 1 (figure 5(a)), the knowledge of the ratio G  provides 
a lower bound  for the interface debonding length. However, the early failure cannot be predicted, eqn. 
(16) is a necessary condition but is not sufficient. A much thorough investigation shows that, in this latter 
case, it is necessary to invoke in addition a stress criterion to have a complete prediction of the mechanism 
[7]. The stress criterion gives an upper bound for the admissible debonding lengths and it must be checked 
that it is consistent with the lower bound . 
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Figure 5: The function )(µg  for different contrasts between the components. 
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