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ABSTRACT

A computational procedureisdeveloped for solving theproblem of apenny-shaped fracturepropagating paral-
lel to the free-surfaceof an impermeableelastic solid. The fracture isdriven by injection of an incompressible
viscous

�
uid. The crack is modeled as a continuous distribution of dislocation disks associated to normal and

shear displacement discontinuities along the fracture. The Green’s functions for the elastic half-space are de-
rived based on Eshelby’s method for inclusions in in� nite isotropic solids and a powerful “ re� ection” rule
devised by Aderogba[1]. Theresulting integro-differential equationsaresolved numerically for theviscosity-
dominated regime of � uid-driven crack propagation. The strong non-linear coupling of elasticity and 	 uid

ow is handled by a � nite difference scheme, and the time step varies until the chosen increment of crack

propagation is satis� ed. Numerical results are presented for the crack radius, opening and net pressure as a
function of radial distanceand time, for thecase of a given constant injection rate.
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INTRODUCTION

Hydraulic fracturing is a stimulation technique of underground reservoirs of hydrocarbons, which relies on
inducing a fracture in the reservoir rock by injecting aviscous � uid from aborehole. A hydraulic fracture can
propagate from the borehole over large distance despite the presence of a con� ning (compressive) stress, due
the internal pressurization by the fracturing � uid. Although most applications of this technique involve deep
fractures, there arespeci � c cases where the in� uence of a free-surface on fracturegrowth becomes signi � cant
or even dominant, asshown in Fig.1. Hydraulic fracturenear afreesurfacehasrecently been applied to induce
rock caving in mining [2]. In such cases, thehydraulic fracture ischaracterized by aratio of thefractureradius
over thedistance from the freesurfacewhich can reach order 1 [3].

Knowledgeof theGreen’s functions iscrucial to establish thegoverning equations for thecrack problems.
In general, the penny-shaped cracks can be modelled by a continuous distribution of dislocations associated
to normal and shear displacement discontinuites. By using Eshelby’s method, closed-form Green’s functions
for many dislocation problemshavebeen obtained, seeMura [4]. Wepresent abrief summary of thesolutions
for a dislocatio loop in an elastic space by means of Eshelby’s method. The solutions are then extended to a
half-spaceusing the “ re� ection” ruledue to Aderogba [1].

Solutions for � uid-driven fractures are based on integral equations obtained by linear superposition of the
Green’s functions for dislocation disks along the fracture. The fracture process involves the coupled mecha-
nisms of rock fracturing and � ow of an incompressible viscous � uid. It is assumed that the energy dissipated
in thecreation of new fracturesurfaceissmall compared to that expended in viscous � ow. This is theso-called
viscosity-dominated regime. Thecorresponding self-similar asymptotic solution at thetip region wasgiven by
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Figure1: Penny-shaped hydraulic fracturepropagating parallel to the free-surfaceof an elastic half-space

Desroches et al. [5]. A numerical algorithm is developed here for simulating the propagation of a hydraulic
fractureat a � xed distance from the freesurface.

GREEN’S FUNCTIONSFOR A HALF-SPACE

In linear elastic solids, thestressesand displacementscan beexpressed in termsof thePapkovich-Neuber(P-N)
potentials ���! " #%$'& (*),+�- .0/ ,

132 46587 9;:=< > ? @BA C DFEHGJI K L M N�OJPRQ SUTWVYX ZJ[ \ [ ] ^ _ `�aUb'c3d eJf g h iBjWk%l m n (1)o prq3sut8v w%xzy { |!}3~z� ��� �B�*�H�%� � �
(2)

in which �Y� � is the Cauchy stress, � � � the strain tensor, �3� the displacement vector and � and � the material
constants, �����U�W�0� . Consider a unit point force acting along the �3� -axis at �r�¡ £¢ ¤3¥ ¦ § ¨3©ª « ¬�­® ¯ in an in° nite
elastic solid. The P-N Potentials aregiven by

±³²B´zµ³¶B·R¸F¹»º!¼!½R¾ ¿0À%ÁÃÂRÄÆÅÈÇ É3ÊË Ì0Í
(3)

in which Î;ÏÑÐ Ò3Ó ÔÖÕ,× Ø . In the same way, we can obtain the Green’s functions for unit point forces along
the ÙYÚ and Û3Ü directions. In the cylindrical coordinate system, a unit point force in the Ý ( Þ0ß direction can be
decomposed into two parts: à0áBâzã ä�åYæ ç è é�ê ë ì³í î ï and ð�ñ!òRó ô õ³ö ÷ ø ù ú�ûYü ý þ in the ÿ�� and ��� directions. Then the
displacements in the Cartesian coordinate system can be obtained by superposition. In a straightforward way,
theGreen’s functions in thecylindrical system can be found by applying acoordinate transformation.

To model a crack, the concept of dislocation loops must be introduced. For an in
�
nitesimal loop, the

eigenstrain � �� 	 inside the loop can be taken as homogeneousand has the form
 �� 
�� ��������� � � ����� � ! "�# $ %'& (*),+�- .�/ (4)

in which 021 35476�8 is theDirac deltaand 9 : theBurgers vector.
When a uniform eigenstrain ; <= > is prescribed within an in? nitesimal closed subregion @ , the eigenstressA�BC D can beobtained through Hooke’s lawE�FG HJILK MON P Q RS T�UWVXZY,[]\�^ _ ` ` a b c d (5)

From Eshelby’s method, thedisplacement e elds due to the disturbed eigenstressescan beexpressed asf2g h i�j�kml n�o�pq r s t�u v*ww2x�yz {}| ~�� �O� ��� � �]��� (6)

seedetails in [1,4]. Two speci � c cases are listed below:

1. Opening dislocations: Theeigenstresses caused by theeigenstrain � �� � are���� �O�L���}� �� � ������ �J�L�2�}� �� �  ¢¡�£¤ ¤J¥§¦ ¨ª©m«�¬ ­�® ¯° ° (7)

in which ±L²L³ ´�µ2¶ ·ª¸m¹]º�» .
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2. Shearing dislocations: Thenon-zero eigenstressescan bewritten as¼�½¾ ¿JÀLÁ�Â�Ã ÄÅ Æ Ç�È�ÉÊ ËJÌLÍ Î�Ï ÐÑ Ò (8)

For a dislocation ring, displacements at any point in the space can be obtained by superposition of inÓ n-
itesimal loops along the ring. It is found that all integrals can be expressed in terms of the Lifschitz-Hankel
(L-H) integrals deÔ ned in [6]. Here, a modi Õ ed form of L-H integrals areemployed [7]Ö×�Ø Ù7Ú Û�Ú Ü�ÝßÞáà

sgn â ã ä å æ�ç2è é�ê]ëOì íïî ð�î ñ�ò (9)ó�ô õ7ö ÷�ö ø�ùßúüûý þ ÿ � � � � ���	� 
�� 
 � ����� � � ��� (10)

where ������� ��� �  "!$#�% & ' ( )�*,+$-�. / 0�1 , 2 3 is the radius of the dislocation ring and 4658777
9;:=<�> ??? @ Hence the

displacementsand the P-N potentials for theopening loop are given by

ACB8DFE�G H I J KML NPORQ S T�U;VWYX Z	[ \�] ^ _a`cb d;e�f�g hjikYl m	n o�p q�r s (11)t	u6vFw�x y z { | }�~���� �������� ��� ��� ���a�c� �;�=��� �j���� ��� ��� ���   (12)

with ¡�¢c£ ¤�¥C¦ §�¨ª©a« . Substitution of displacements in (2) yields

¬­¯®°8±³²�´ µ�¶	·¸�¹ º�» ¼�½ ¾ ¿
(13)ÀÁ�Â�ÃÅÄÇÆaÈ É ÊPËRÌ�Í Î�Ï�ÐÑ�Ò Ó�Ô Õ	Ö ×�ØaÙÛÚ�Ü	ÝÞYß à	á â�ã ä å æ
(14)

and for shearing loops, wehave

çCè8éFê�ë�ì í î ï ð�ñ�ò ójôõ�ö ÷�ø ù�ú û�üjýÛþ	ÿ ����� � ���	�
 ��
 ��� ��� � (15)����������� �  !#" $&%(' )+*,.- /�0 1�2 3 4+576�8 9�:�;�< =+>?�@ A�B C�D E�F G (16)

This leads to HIKJLNMPO�Q R�SUTV�W X�Y Z�[ \ ] (17)^_�`badcfehg i jlknm�o p�qsrt.u v�w xUy z�{h|7}�~U���� ��� ��� � � �
(18)

A very powerful tool developed by Aderogba[1] can beused to connect thesolution for an in� nitemedium
and theonefor abondedsemi-in� nitemedium. A special caseisconsideredhere, i.e. ��� and ��� vanish. Hence,������������ ��� ��� ���h���h�� ¡�¢ £ ¤ ¥�¤ ¦s§�¨h©�ª¬««h­ ®s¯�° ±�² ³�² ´sµ�¶ (19)·P¸�·s¹�º » ¼ ½�¼ ¾�¿hÀ�Á�ÂsÃ�Ä Å Æ Ç�Æ ÈsÉ�ÊhËÍÌ Î�Ï�Ð�Ñ�Ò Ó�ÔhÕNÖ�×Ø�Ù Ú�Û Ü�Û ÝfÞ�ß à�á

(20)

Substitution of (13,14) in theabove equations leads to theP-N potentials for half-spaceproblemsâã�äåNæPç�è é�ê ë ìí�î ï ð ñ òUó ô�õ ö ÷+øúùû+ü ý þ ÿ ��� ��� ���	��
���
����� � � �
0 � ��� ��� � (21)����! #"%$ &('()+*,.-/�0 1 2 3 4�5 6�7 8:9	;�<�=�>?	@ A B C D�E F�G H�IKJML(N+OPRQS	T U V W X�Y Z�[ \�]K^`_�a b�cd�e f g h i�j k�l m n o (22)

for opening dislocation rings. Also, wecan obtained theP-N potentials for shearing dislocation rings
pqsrtvu#w:x y�z { |}�~ � � � �:� ��� � �	����	� � � � ��� ��� ���K�`� ������	� � � �  �¡ ¢�£ ¤�¥ ¦ (23)§¨ª©¬«#­%® ¯(°²±´³µR¶·�¸ ¹ º » ¼�½ ¾�¿ À:Á	Â�Ã�Ä�ÅÆ	Ç È É Ê Ë�Ì Í�Î Ï�ÐKÑMÒ²Ó´ÔÕ.Ö×	Ø Ù Ú Û Ü�Ý Þ�ß à:á	âäã�å�æ�çè�é ê ë ì í�î ï�ð ñ ò ó (24)

in which ôõ�ö ÷ ø ù úüû ýþû ÿ�� and ���� � � � 	�
 �

 ��� represent the modi � ed L-H integrals for the dislocation ring and its
image.
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Now let us consider a dislocation disk. For the opening dislocations, we assumed a uniform distribution
of displacement discontinuity on the whole circular dislocation disk with a radius � . On the other hand,
since there is no shear displacement at the centre,we assumed that the shear displacement discontinuity is
proportional to thedistance from thecenter � then theBurgers vector isde� ned as

� � ����� � � � � �! 
(25)

After integration from " to # , thenormal stress and shear stresses for theopening casearegiven by

$%'&( (*),+.-/�0 1 2 3 465 798 : ;=<�> ?A@CB D E�FG�H I J K L6M NPO Q6R�S*TU=V W X Y Z![ \9] ^!_�`ba c�dfe!g h=ij=k l m n o6p qPr s6t�u.s v!v!wPxy=z { | } ~!� �9� �9� (26)��'�� �*�,��� ���C�!� �=��=� � � � �!� �!� �9���b  ¡�¢C£!¤ ¥=¦§=¨ © ª « ¬!­ ®6¯ °9±�².° ³!³!´Pµ¶�· ¸ ¹ º »!¼ ½!¾ ¿6À (27)

and for theshear case

ÁÂ�ÃÄ Ä*ÅÇÆ�È ÉAÊCË Ì Í�ÎÏ�Ð Ñ Ò Ó ÔPÕ Ö9× Ø6Ù�ÚbÛ ÜAÝCÞ!ß à�áâ�ã ä å æ çPè é9ê ë6ì=ífî!ï ï!ðPñò=ó ô õ ö ÷9ø ùPú û9ü (28)ýþ�ÿ� ��� ���� � 	 
 �
� ��� � ����� ������� ����� ! " # $&% '�( )�*�+-,.0/ 1 2 3 4
5 6�7 8 9;:=< >@?BA�C D�EF�G H I J K&L M�N O&P�QSR�T�T U
VW0X Y Z [ \
] ^�_ `�a
(29)

in which bc;d e f gh i�j�k�l�mon p q rs tvu�w�x , y�zo{=|~}o� ���B�
� � .
GOVERNING EQUATIONSAND SCALING

Using thesingular solutions for dislocation loops, two singular integral equations can beestablished�������� ������������� �~�����o� ��� �   ¡�¢�£�¤�¥¦�§�¨ ©�ª�«¬�­¯®¬�° ±~²�³�´ µ ¶�· ¸ ¹ º�»�¼¾½B¿À�Á Â¯Ã Ä Å Æ Ç (30)È¾ÉÊ�Ë�Ì Í@Î�ÏÐ�Ñ¯ÒÐ�Ó Ô~Õ�Ö�×oØ Ù�Ú Û Ü Ý&Þàß�á�âã�ä�å å�æ�çè�é¯êè�ë ì~í�î�ï ð ñ�ò ó ô õ�ö�÷=ø (31)

in which ùûúýü�þ�ÿ , � the crack depth����� ���	�
��
 
 ��������� ���	����� � ������ "! #�$	%&�'( ) *�+ and ,"- -�.	/0213 4 5�687�9�:
and ;8< are dislocation densities. The above equations are rearranged in terms of the opening = and shear
displacement discontinuity > as ?�@ A�B CED"FHG�I J�K L M N�O"P

(32)

The equation governing the Q ow of viscous R uid in the fracture [8] isS�TS�UWV XX Y Z�[ \\ [ ]�^�_a`8b�cb�dfe (33)

in which g is the h uid viscosity. The condition that the fracture is in mobile equilibrium at the tip ikjmlkn o p ,qsrutwvsx y
, can beexpressed as z|{~}E��"� � �|�W�f� � � �����W���	� (34)

Besides thecondition �s� �s� � ���w� , theboundary conditions at the fracture inlet �"�w� are�8� �s  ¡ ¢�£w¤ and ¥ ¦�§ ¨ ©ª «­¬8®f¯�°w±�² (35)

It follows from the above equation that ³�´¶µ¸· ¹ º�»f¼ near the source and ½E¾À¿EÁ ÂuÃ . Alternatively, the source
can be taken into account by theglobal continuity equationÄ ÅuÆ¶ÇÈÊÉ�ËaÌ�Í"ÎwÏ"Ð Ñ (36)

Introducean arbitrary timescale Ò . Given an injection rate Ó"Ô , a Õ xed reference length Ö×�Ø isdeÙ ned asÚÛ�Ü"ÝÀÞ"ß"à á"â ãuäå�æèçké ê ë (37)
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in which ì�íaî	ï ð�ñ . After deò ning the dimensionless time ó|ôöõ ÷ ø and radial coordinate ùHúöûfü�ýþ�ÿ , the
dimensionless fracture radius ��� ��� ( ���
	��
�� ), openings ���� ��� ��� and ���� ���  �! " and pressure #$&% '�( )�* are
introduced as follows [9]+-,�.0/21354768:9<;>=@?A B2CD5EGFHJI<K�LNMO P2QRTS7UV�WYX�Z@[\ ]@^0_ (38)

where thesmall number `a b0c<d e�f g>h isdei ned asjk l0mon p�q r@s0t u0v w x y (39)

We can now formulate the set of equations to be solved for z{0| }�~ ��� and ��� ��� . By expressing �� in (33) in
terms of �� using (32), asingle integro-differential equation for �� can be formulated�������<� �� �� � �5�2����>��������2� >¡ ¢�£ ¤ (40)

The inlet boundary condition is translated in termsof theopening¥5¦§�¨0©©�ª�«-¬®­¯>° ±�²�³³³³ ´ µ�¶�·¹¸º » (41)

Finally, the tip behavior of theopening is given by thezero-toughness asymptote [4]¼½:¾�¿@À Á Â Ã Ä Å Æ2ÇÈTÉ Ê ËNÌ Í-ÎÐÏ�Ñ Ò Ó ÔÖÕ�×JØ@Ù ÚÐÛÝÜ (42)

NUMERICAL ALGORITHM

We outline here the algorithm devised by Savitski [10] to construct the self-similar zero-toughness solution
( Þ
ß
à ). Minor modi á cations were required here to solve the half-space crack problems. The numerical
algorithm is based on a â xed grid with a constant element size ã�ä , and a variable timestep å�æ . At each step,
the radius is increased by a ç xed increment of size èêé corresponding to an initially unknown time step ë�ì .
After each radius increment íêî , the timestep ïêð and theopening ñò have to be calculated using adiscretized
form of (40-42). Thecalculations arestarted with an initial crack radius ó2ô�õ ö�÷�ø@ù�ú , and assuming the initial
crack aperture to correspond to the solution for ûýüÿþ�� The computations are carried out until the fracture
radius reaches apredetermined length ����� �	��

��� � ��� .

A combination of a � nite difference scheme and the displacement discontinuity method [11] is used to
solvenumerically (40-42). The following description relieson two indices: thesubscript � to denote thenodes
at the center of the spatial elements, and the superscript � for the time index. Also, the current number of
activeelementsat timestep � isdenoted by � . Hence, �������! "
# $&% ' (�)	* with +&,.-0/ 13254 68789 :�; and <>=@?8A B5C
also DEGF H3IGJ>KML5NPO .

Thediscretized form of (40) can now bewritten asQR�STVUXWY�Z\[.]^_�`ba cd e�f�g h&ikj l>m n op o�pq�rsut�v w	x�y op z8{|�}�~3����
���&� � ���X�8� � (43)

where the coef � cient � op takes values between � (explicit) and � (implicit). The source term �&�G��� for all
nodes, except for the � rst oneat thewell ���\�@� �&� ����� . Thematrix   is de¡ ned as¢k£ ¤�¥�¦&§ ¨u© ª3« ¬ ­\®M¯ °&±3²�³ ´ µ ¶V· ¸ ¹>º�» ¼ ½V¾ ¿.À Á Â

(44)

where Ã is theelasticity matrix and Ä , Å thevectors of coef Æ cientsÇ seeSavitski [10] for details.
The timestep is thesolution of theasymptotic equation (42) discretized asÈÉGÊ>Ë�Ì Í�Î�ÏMÐ�Ñ Ò Ó Ô Õ Ö ×\Ø�ÙPÚÛ�Ü.ÝßÞ à á\â ãPäæå>ç�è0éê8ëæì�í î ï (45)

Therefore, the timestep ð�ñ can becalculated asò�ókôöõ÷
tip ø
ù ú&û ü ý þ ÿ�� � ��� tip� � �
	

� ��
�� ����� �� ������� �! " # (46)

where $ tip is the number of nodes taken in the near tip region of the fracture dominated by the asymptotic
behavior. Only one node near the tip can be used at the beginning of the simulation, when % is small. As the
fracturepropagates, moreand moreelements fall within that region and &(' ) * can be increased.
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Figure 2: Dimensionless fracture properties at different crack depths, (a) Radius+ (b) Opening , (c) Shearing
and (d) Pressure.

RESULTS

Computations were performed using -�.0/21!3 4�5 and 6(7�8 9;:2<�= . Hence >@?�A BDCFE�G H . Figure 2 provides the
evolution of the fracture radius, the normal and shear discontinuity and the net pressure along the fracture for
three difference crack depths IKJML N�O!P�Q�R S!T
U!V W . The evolution of the opening and pressure is given at the
maximum crack radius X@Y�Z [ . The expected singular distribution of the net pressure is evident in Fig. 2d. The
effect of the free surface on the viscosity-dominated solution can also be observed in Fig. 2: the in\ uence of
thefreesurface isresponsible for a larger opening, asmaller length of thefracture, and asmaller inlet pressure
at agiven time(corresponding to agiven volumeof ] uid injected).
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