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ABSTRACT

A computational procedure is developed for solving the problem of a penny-shaped fracture propagating paral -
lel to the free-surface of an impermeable elastic solid. The fracture is driven by injection of an incompressible
viscous fluid. The crack is modeled as a continuous distribution of dislocation disks associated to normal and
shear displacement discontinuities aong the fracture. The Green’s functions for the elastic half-space are de-
rived based on Eshelby’s method for inclusions in infinite isotropic solids and a powerful “reflection” rule
devised by Aderogba[1]. The resulting integro-differential equations are solved numerically for the viscosity-
dominated regime of fluid-driven crack propagation. The strong non-linear coupling of elasticity and fluid
flow is handled by a finite difference scheme, and the time step varies until the chosen increment of crack
propagation is satisfied. Numerical results are presented for the crack radius, opening and net pressure as a
function of radial distance and time, for the case of a given constant injection rate.
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INTRODUCTION

Hydraulic fracturing is a stimulation technique of underground reservoirs of hydrocarbons, which relies on
inducing afracture in the reservoir rock by injecting a viscous fluid from a borehole. A hydraulic fracture can
propagate from the borehole over large distance despite the presence of a confining (compressive) stress, due
the internal pressurization by the fracturing fluid. Although most applications of this technique involve deep
fractures, there are specific cases where the influence of afree-surface on fracture growth becomes significant
or even dominant, as shown in Fig.1. Hydraulic fracture near afree surface has recently been applied to induce
rock caving in mining [2]. In such cases, the hydraulic fracture is characterized by aratio of the fracture radius
over the distance from the free surface which can reach order 1 [3].

Knowledge of the Green’s functionsis crucial to establish the governing equations for the crack problems.
In general, the penny-shaped cracks can be modelled by a continuous distribution of dislocations associated
to normal and shear displacement discontinuites. By using Eshelby’s method, closed-form Green's functions
for many dislocation problems have been obtained, see Mura[4]. We present a brief summary of the solutions
for adislocatio loop in an elastic space by means of Eshelby’s method. The solutions are then extended to a
half-space using the “reflection” rule due to Aderogba [1].

Solutions for fluid-driven fractures are based on integral equations obtained by linear superposition of the
Green's functions for dislocation disks along the fracture. The fracture process involves the coupled mecha-
nisms of rock fracturing and flow of an incompressible viscous fluid. It is assumed that the energy diss pated
in the creation of new fracture surfaceis small compared to that expended in viscous flow. Thisisthe so-called
viscosity-dominated regime. The corresponding self-similar asymptotic solution at the tip region was given by



Figure 1: Penny-shaped hydraulic fracture propagating parallel to the free-surface of an elastic half-space

Desroches et al. [5]. A numerical algorithm is developed here for simulating the propagation of a hydraulic
fracture at a fixed distance from the free surface.

GREEN’'SFUNCTIONSFOR A HALF-SPACE

Inlinear elastic solids, the stresses and displacements can be expressed in terms of the Papkovich-Neuber(P-N)
potentials {®;, ¥} (i = 1,3),

oy = (K=1)(Pji +Pij)/2+ (3 — K)Pppbij/2 — 23 Priy — V45 1)

)

2pus = (K + 1)® — (2;8; + V), (2)

in which ¢;; is the Cauchy stress, ¢;; the strain tensor, u, the displacement vector and ¢ and v the material
congtants, k = 3 — 4v. Consider a unit point force acting along the zz-axis at x' = (z}, 24, ¥3) in an infinite
elastic solid. The P-N Potentials are given by

®; =Py =0, P3=c/R, ¥=—cxy/R (3)

in which ¢ = 1/(x + 1). In the same way, we can obtain the Green’s functions for unit point forces along
the z; and z» directions. In the cylindrical coordinate system, a unit point force in the » () direction can be
decomposed into two parts: f; = cosf (—siné') and f, = siné (cos @) in the z; and z, directions. Then the
displacements in the Cartesian coordinate system can be obtained by superposition. In a straightforward way,
the Green’s functions in the cylindrical system can be found by applying a coordinate transformation.

To model a crack, the concept of didocation loops must be introduced. For an infinitessmal loop, the
eigenstrain ez;- inside the loop can be taken as homogeneous and has the form

el (x) = —(bin; + b;n;)6(S — x)/2 4)

ij
inwhich 6(S — x) isthe Dirac deltaand b; the Burgers vector.
When a uniform eigenstrain ez;. is prescribed within an infinitessmal closed subregion V, the eigenstress

az;. can be obtained through Hooke's law
14
ol =2y {63} + Ee£k6ij )
From Eshelby’s method, the displacement fields due to the disturbed eigenstresses can be expressed as

' 7 a 7 /
ui(x) = /Ufl(x )ﬁGik(x,x )dx (6)
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see detailsin [1,4]. Two specific cases are listed below:

1. Opening dislocations: The eigenstresses caused by the eigenstrain e”, are

T T T T T T
Opp = VPezz: Og9 = VPezz? 0oz = (1 - V)Pezz (7)

inwhich P = 2u/(1 — 2v).



2. Shearing dislocations: The non-zero eigenstresses can be written as

= 2/’Le7’z7 O‘ZT = 2Mez; (8)

For a dislocation ring, displacements at any point in the space can be obtained by superposition of infin-
itesimal loops along the ring. It is found that all integrals can be expressed in terms of the Lifschitz-Hankel
(L-H) integrals defined in [6]. Here, amodified form of L-H integrals are employed [7]

J(m,n,p) = (sgn[¢])™ "] (m,n, p) (9)

Tonnp) = [ Jut) oty =t (10)
‘0

where p = r/r' & = z/r' € = z'/r’, r' isthe radius of the dislocation ring and @ = ‘5 - 5‘". Hence the
displacements and the P-N potentials for the opening loop are given by

= dfr (s = 1)/27(0,1,1) + (€ - £)7(0,1,2)] (12)
W= dfr[(k+1)/27(0,0,1) + (€ — €)7(0,0,2)] (12)

with d = 2u/(1 4 x). Substitution of displacementsin (2) yields

d = d/r'J0,0,1) (13)
U = —d[(k—1)/2J(0,0,0) + £ J(0,0,1)] (14)

and for shearing loops, we have

w = dfr{(r+1)J(1,1,1) - 2(¢ - €)J(1,1,2)] (15)
u, = dfr[=(s=1)J(1,0,1) = 2(£ = £)J(1,0,2)] (16)
Thisleadsto
& = d/r'J1,0,1) (17)
T° = —d[(k+1)/2J(1,0,0) + £ J(1,0,1)] (18)

A very powerful tool developed by Aderogba[1] can be used to connect the solution for an infinite medium
and the one for abonded semi-infinite medium. A special caseisconsidered here, i.e. ®,. and ®, vanish. Hence,

d, = 0% 0, z2) +rd(r,0,—2) +2%\I/O(T 6, —2) (19)
U = V0, 2)+rwT%r,0,—2) + (k* —1)/2 / ®(r, 0, —2)dz (20)

Substitution of (13,14) in the above equations leads to the P-N potentials for half-space problems

. = d/r'[JV(0,0,1) — J2(0,0,1) — 26 T*(0,0,2)] (22)
. -1 .

o= d (0,0,0) = €' 7V(0,0,1) + =5—=J*(0,0,0) + x J(0,0,1)] (22)

for opening dislocation rings. Also, we can obtained the P-N potentials for shearing dislocation rings

& = d/r'[TV(1,0,1) = JD(1,0,1) +2§’j<2>(1 0, 2)] (23)

z

) 1 -
= d- “+ BT T01,0,0) — € TO(1,0,1) + 12 J<2>(1 0,0) — k' JA(1,0,1)] (24)

in which J®(m,n, p) and J® (m,n, p) represent the modified L-H integrals for the dislocation ring and its
image.



Now let us consider a dislocation disk. For the opening dislocations, we assumed a uniform distribution
of displacement discontinuity on the whole circular dislocation disk with a radius R. On the other hand,
since there is no shear displacement at the centre,we assumed that the shear displacement discontinuity is
proportional to the distance from the center; then the Burgers vector is defined as

by, =1 by, /R (25)
After integration from 0 to R, the normal stress and shear stresses for the opening case are given by

5. = —JN(1,0,1) = (£ = &)TV(L,0,2) + TH(L,0,1) + (£ +£)TP(1,0,2) + 266 T (1,0,3)26)
&iz = _(5 - 5’)j(1)(17 17 2) + (5 - 5’)j(2)(17 17 2) + 2551‘7(2)(17 17 3) (27)
and for the shear case

5. = —(6-€)JD(2,0,2) + (£ -£)T?(2,0,2) - 26¢' TP (2,0,3) (28)

zz

5h, = JY2,1,1) - (¢ - ¢)TD(2,1,2) = TD(2,1,1) + (€ + £)TP(2,1,2) — 2¢¢ TP (2,1, 3) (29)
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inwhich 61" = 4Ro}\” /E', E' = E/(1 - 1?).

GOVERNING EQUATIONS AND SCALING

Using the singular solutions for dislocation loops, two singular integral equations can be established

R r 8 R ros R

/0 Gnn (E: E?R) dn(S,t)dS + /0 Gns (E: E?R) ds(87 t)dS = _Ep(rv t) (30)
R r 8 R r s

/O Gan (E’ E,R) do(s,t)ds + /O G (E’ E,R) dy(s,t)ds = 0 (31)

inwhich R = H/R, H the crack depth; G,., = ¢'./4, G,,; = &°_/4, Gy, = &', /4 and G,, = 5°_,/4; d,,
and d, are didocation densities. The above equations are rearranged in terms of the opening w and shear
displacement discontinuity « as

H{w; R} = p(r,t)/E' (32)
The equation governing the flow of viscousfluid in the fracture [8] is
ow 1 0 30p
ot 12yror (rw 8?“) (33)

in which ~ is the fluid viscosity. The condition that the fracture is in mobile equilibrium at the tip » = R(¢),
K; = K., can be expressed as

KI
sz(R—r)l/2 R-r<R (34)
Besides the condition w(R, t) = 0, the boundary conditions at the fractureinlet » = 0 are

q(R,t) =0 and 2« lir% rq=Q, (35)

It follows from the above equation that ¢ ~ O(1/r) near the source and p ~ — Inr. Alternatively, the source
can be taken into account by the global continuity equation

‘R
27 / rwdr = Q,t (36)
Jo

Introduce an arbitrary time scale 7. Given an injection rate @, a fixed reference length L, is defined as

~ EO3T4\1/?
- (227)
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in which o/ = 12v. After defining the dimensionlesstime r = ¢/T and redial coordinate { = r/L,, th

dimensionless fracture radius x(7) (0 < ¢ < ¥), openings Q(¢,7) and Z(¢, 7), and pressure I1(¢, 7) are
introduced as follows [9]
x=R/L, Q=w/z,L, E=wu/z,L, I=p/z,E (38)

where the small number g, = ¢,(T') is defined as
— ( I/El )1/3 (39)

We can now formulate the set of equatlons to be solved for (¢, 7) and x(7). By expressing IT in (33) in
terms of (2 using (32), asingle integro-differential equation for € can be formulated

00 _19 (593 0 —H{; R}) (40)

or 5 85
The inlet boundary condition is translated in terms of the opening
1
93 H{R = — 41
S = (41)
Finally, the tip behavior of the opening is given by the zero-toughness asymptote [4]
Q=233 B (x -6 1-¢/x<1 (42)

NUMERICAL ALGORITHM

We outline here the algorithm devised by Savitski [10] to construct the self-similar zero-toughness solution
(R = 0). Minor modifications were required here to solve the half-space crack problems. The numerical
algorithm is based on a fixed grid with a constant element size A, and avariable time step Ar. At each step,
the radius is increased by a fixed increment of size A¢ corresponding to an initially unknown time step Ar.
After each radius increment A¢, the time step A7 and the opening 2 have to be calculated using a discretized
form of (40-42). The calculations are started with an initial crack radius x,..., = 5A¢, and assuming theinitial
crack aperture to correspond to the solution for R = 0. The computations are carried out until the fracture
radius reaches a predetermined length x .. = NmaxAE.

A combination of a finite difference scheme and the displacement discontinuity method [11] is used to
solve numerically (40-42). The following description relies on two indices: the subscript ¢ to denote the nodes
at the center of the spatial elements, and the superscript m for the time index. Also, the current number of
active elements at time step m isdenoted by N. Hence, Q7" = Q(€,, 7)) With§, = (i —1/2)Af andi =1, N;
aso x(t,) = NAE.

The discretized form of (40) can now be written as

o — ! 1
Ar (Mg

where the coefficient o, takes values between 0 (explicit) and 1 (implicit). The source term d; = 0 for all
nodes, except for the first one at the well d; = 1/27A¢. The matrix K is defined as

Kij = a;M;_1; — (a; + b)) Myj + b M1 (44

where M is the elasticity matrix and a, b the vectors of coefficients; see Savitski [10] for details.
Thetime step is the solution of the asymptotic equation (42) discretized as

1/3 2/3
Qs — 21/33506 (ﬁ—f) {As ( _ %)} (45)

Therefore, the time step A7 can be calculated as

Kij (oiop - Q" + (1 — aigp) Q) + d, i=1,N (43)

1 S (i —1/2)?
_ L ey 0 1/2)°
AT Nﬂp2 35/2(A¢) Z:; O (46)

where Ny, is the number of nodes taken in the near tip region of the fracture dominated by the asymptotic
behavior. Only one node near the tip can be used at the beginning of the simulation, when N issmall. Asthe
fracture propagates, more and more elements fall within that region and Ny;, can be increased.
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Figure 2: Dimensionless fracture properties at different crack depths, (a) Radius; (b) Opening; (c) Shearing
and (d) Pressure.

RESULTS

Computations were performed using A¢ = 0.02 and Ny, = 60. Hence x,,... = 1.2. Figure 2 provides the
evolution of the fracture radius, the normal and shear discontinuity and the net pressure along the fracture for
three difference crack depths H = 120, 1.2, 0.6. The evolution of the opening and pressure is given at the
maximum crack radius y,,...- 1he expected singular distribution of the net pressureis evident in Fig. 2d. The
effect of the free surface on the viscosity-dominated solution can aso be observed in Fig. 2: the influence of
the free surface isresponsible for alarger opening, asmaller length of the fracture, and asmaller inlet pressure
at agiven time (corresponding to a given volume of fluid injected).
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