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ABSTRACT 
 
Based on the universal nature of the asymptotic elastic fields at three-dimensional bimaterial interface 
corners, specifically that the stresses are singular with magnitude scaled solely by scalar stress 
intensities, we pursue the application of a fracture initiation criterion based on critical values of the 
stress intensities.  To demonstrate this, we designed and fabricated a series of specimens consisting of 
two square aluminum prisms bonded together by a thin layer of epoxy.  These butt-joint specimens 
were loaded in four-point flexure to failure.  The orientation of the specimens was varied to 
encourage fracture to initiate at either the two-dimensional interface edge or the three-dimensional 
interface corner.  We found that the failure stresses differ for each initiation mode, and depend 
significantly on the epoxy bond thickness.  In order to apply the interface corner fracture initiation 
criterion, we carried out asymptotic calculations to determine the order of the stress singularity and 
the angular variation of the elastic fields at the interface corner.  We determined the corresponding 
stress intensities, which depend on the far-field specimen geometry and loading, from full-field finite 
element calculations.  From the measured failure stresses, we then determined the corresponding 
critical stress intensities.  We found that although the failure stresses vary with epoxy thickness, the 
critical stress intensities do not, suggesting that they are a reasonable parameter to correlate fracture 
initiation. 
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INTRODUCTION 
 
Consider the bimaterial interface corner geometry shown schematically in Figure 1.  In general, the 
corner consists of intersecting faces (planes) and edges (lines) of arbitrary orientation.  As shown, the 
edges may be free edges or interface edges.  Each material, denoted by A and B, occupies a part of 
the solid and both materials may be anisotropic with principal material axes arbitrarily oriented with 
respect to the (x y z) axes.  We consider the faces to be traction free, although other homogeneous 
boundary conditions can be easily handled and the solid is loaded at remote boundaries by tractions 
and displacements. 
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Figure 1: Three-dimensional bimaterial interface corner geometry showing coordinate axes.  The 
faces (planes) and edges (lines) are arbitrarily oriented. 

 
It is reasonably well known that a stress and a displacement field of the form [1-5]  
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exist in the region surrounding the tip of the three-dimensional bimaterial interface corner of 
Figure 1.  In general, there are an infinite number of terms in the series, each corresponding to a 
specific deformation mode, m.  Here λm-1 are the orders of the stress singularities,  and 

 describe the angular variation of the stress and displacement fields in each material (M = A, 
B) and  are the corresponding stress intensities.  λ
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m-1,  and  depend on the 
elastic mismatch and asymptotic interface corner geometry, and depend on the far-field loading 
and geometry.  This expansion of the stress state is a natural generalization of the classical mode I, II 
and III fields in homogeneous isotropic cracked solids; however, the deformation modes generally do 
not possess the simple symmetry of cracks in homogeneous media.  The deformation modes strongly 
depend on the elastic mismatch and the nature of the asymptotic corner geometry.  In Eqn. 1, λ
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 and  can be determined from an asymptotic analysis of the stress state near the 

three-dimensional interface corner [2-5].  Note that  may be singular along reentrant free 
edges and interface edges (see Figure 1).  Only the stress intensities  cannot be determined from 
the asymptotic analysis.  They depend on the far-field geometry and loading of the solid.   
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 Terms that give rise to both singular and nonsingular stresses exist in the series.  Finite strain-energy 
at the three-dimensional bimaterial interface corner requires Re{λ} > -1/2 (for two-dimensional 
corners Re{λ} > 0) and finite displacements require Re{λ} > 0; however, as previously discussed 
[6,7] these are not completely satisfactory reasons for limiting the range of Re{λ} since they are 
based on assessment of the elastic solution in a region where it is not valid. Very close to the 
interface corner the actual solution is usually perturbed by material nonlinearity and/or geometric 
perturbations from the ideal interface corner, and far from the interface corner, it is perturbed by the 
far-field boundaries and loads.  The terms with eigenvalues in the range 0 < Re{λ} < 1 may dominate 
the other terms in the series expansion of Eqn. 1 in an annular region surrounding the interface 
corner.  In this annulus, these terms dominate higher-order singular terms because these have 
amplitudes that are small, and they dominate the nonsingular terms because the annulus is sufficiently 
close to the tip of the interface corner.  Furthermore, in this elastic annulus the elastic fields for a 
particular loading mode exhibit a universal structure; their magnitude is simply scaled by a single 
parameter, the stress intensity .  As such, this annulus is termed the K-annulus.  The region 
where the higher-order singular terms are significant compared to the -term is embedded within 

D
mK 3

D
mK 3



the K- annulus where material nonlinearities are likely to invalidate the elastic solution anyway.  As 
in linear elastic fracture mechanics,  is a measure of how the far-field load and geometry are 
communicated to the interface corner.  Thus for a given material pair and three-dimensional 
bimaterial interface corner geometry, the asymptotic elastic fields are completely characterized by 

.  For these reasons, we consider only values in the range 0 < Re{λ} < 1; the results for the 
geometry and loads considered here show that for the analysis of fracture initiation, these terms are 
sufficient.  We caution, however, that for other geometry and load cases, this may not be the case.   
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In practice, an interface corner can be the site of fracture initiation because of the existence of highly 
elevated stresses.  Technological examples include microelectronics and microsensor packaging 
where interfaces arise due to various bonding and encapsulating processes that inevitably result not 
only in multimaterial interfaces, but also in multimaterial free edges and corners which are site of 
potential interface failure [8].  Given the universal nature of the stress field near the three-
dimensional bimaterial interface corner, which is scaled by the three-dimensional stress intensities, a 
reasonable approach to correlate fracture initiation appears to be the use of critical values of the stress 
intensities.  Specifically, in the spirit of Irwin for classical linear elastic fracture mechanics, we 
pursue a fracture initiation criterion of the form ( ) cr

D
m fKf =3 .  This criterion says fracture will 

initiate at the three-dimensional interface corner when some combination of  reaches a critical 
value.  The criterion only addresses initiation; the subsequent crack propagation is a related, but 
different problem.  In general, the functional form of 
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determined experimentally.  The criterion can potentially be simplified to  if only one 
singular mode exists, as is the case for the interface corner geometry and material pair considered 
here or if one singularity dominates the effect of others (see for example Dunn et al., [9]).  Further 
details regarding the approach presented here are given by Labossiere and Dunn [3]; they build 
heavily on similar ideas applied to two-dimensional situations.  A comprehensive review of the use of 
critical stress intensities to correlate fracture initiation at two-dimensional bimaterial interface corners 
has recently been written by Reedy [10]. 
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APPLICATION TO BUTT-JOINTS LOADED IN BENDING 
 
We designed and fabricated a series of butt-joint test structures with three-dimensional bimaterial 
interface corners composed of 6061-T6 aluminum and cast West System 105-205 epoxy.  Both 
materials are isotropic with E = 70.0 GPa and ν = 0.33 for the aluminum and E = 2.98 GPa, ν = 0.38, 
and σy = 52 MPa for the epoxy.  A schematic of the test structures and the load configuration is 
shown in Figure 2.  The structures are prisms with a square cross section and an overall length of 150 
mm.  The butt-joint of thickness a ranging from 0.05 to 1.1 mm is located in the center of the 
specimen, and the bimaterial interface is square with dimensions w × w, where w = 25.4 mm.  The 
specimens are loaded in four-point flexure in the -x-direction of Figure 3 with L = 127 mm and l = 
76.2 mm.  The load and supports are symmetrically located with respect to the butt-joint.  A similar 
set of experiments was performed on two-dimensional specimens which were identical in geometry; 
however, the specimens were rotated 45 degrees about the z-axis in Figure 2, forcing fracture 
initiation to occur at the bottom interface edge, making the geometry and loading two-dimensional.  
This specimen geometry and load configuration was chosen for several reasons: four-point flexure 
loading is relatively simple to perform; fracture initiation occurs at one of the interface corners on the 
bottom of the specimen; by introducing only one finite length scale, a, the analysis is simplified, and; 
there is only one eigenvalue λ-1 giving rise to singular stresses at the three-dimensional bimaterial 
interface corner, which also simplifies the analysis and interpretation of the results. 
 
The specimens were prepared as follows:  The surfaces of the aluminum prisms to be bonded were 
machined flat and subsequently polished with 1500 grit paper and cleaned in 1-1-1 Trichloroethane, 
the aluminum prisms were placed in a mold coated with a wax release film and the epoxy was cast 



within 20 minutes of the cleaning process.  Once the epoxy cured at room temperature, the specimens 
were carefully removed and then wet polished to reveal well-defined interface corners and interface 
edges.  The radius of curvature of the three-dimensional aluminum/epoxy interface corners was 
measured with optical microscopy and in all cases was less than 8 µm. 
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Figure 2: Four-point flexure test set-up showing butt-joint specimen dimensions and local three-

dimensional bimaterial interface corner geometry. 
 
The result of asymptotic calculations show that there is a stress singularity of order λ-1 = -0.351 at 
the three-dimensional aluminum/epoxy interface corner and a stress singularity of order λ-1 = -0.292 
along the two-dimensional interface edges.  The complete structure of the near tip fields for this 
geometry and material pair can be found in Labossiere and Dunn [3].  Dimensional considerations 
dictate that the stress intensity DK 3  for the three-dimensional interface corner geometry considered 
here takes the form: 
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Here a is the epoxy thickness, and  is the normal stress that would exist at the bottom tip of a 
homogeneous beam of dimension w × w under the four-point flexure loading of Figure 2: 
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In general, DY 3  is a nondimensional function of both the elastic mismatch ( ,,, ABA EE ν and Bν are the 
Young's moduli and Poisson's ratios of the two materials) and the geometry, however, by designing 
our specimens with only one finite length scale a, the effect of geometry appears solely through , 
and 

λ−1a
DY 3  becomes a function of elastic mismatch only.  Furthermore, since the elastic mismatch is 

fixed for the aluminum/epoxy material pair considered here, DY 3  is a constant.  We determined DY 3  
from detailed full-field finite element analyses of the three-dimensional aluminum/epoxy specimens 
loaded in four-point flexure using a commercially available finite element code.  Typical finite 
element models contained ~100000 degrees of freedom with highly refined meshes near the interface 
corner to ensure accurate modeling of the asymptotic elastic fields.  DY 3  was obtained from the finite 
element results by matching the finite element solution for the displacements near the interface corner 
with the asymptotic displacements of Eqn. 1 along certain rays emanating from the bimaterial 
interface corner using a least squares approach.  Calculations for various epoxy thicknesses over the 
range being tested showed that DY 3  is indeed a constant and its value is DY 3 = 0.431.  Although not 
presented here, similar analyses were performed for the two-dimensional specimen geometry. 
 
 



MECHANICAL TESTING AND INTERPRETATION OF THE RESULTS IN TERMS OF 
CRITICAL STRESS INTENSITIES 
 
Mechanical fracture testing was carried out using the four-point flexure configuration shown in 
Figure 2.  A servo-hydraulic mechanical test system was used to load the specimens under load-point 
displacement control at a rate of 0.01 mm/sec.  In all the tests, the load-displacement response was 
linear until brittle fracture occurred.  The brittle fracture is characterized by a crack that initiated at 
one of the aluminum/epoxy interface corners on the tensile side of the specimen followed by unstable 
crack propagation along the interface.  This is unlike tougher interfaces where the crack may kink 
away from the interface and run into one of the adherends (see for example Dunn et al., [9]). 
 
Figure 3 shows the measured failure stresses calculated using Eqn. 3 plotted as a function of epoxy 
thickness a.  Note that the measured failure stress depends strongly on the epoxy thickness 
invalidating its use as a failure criterion.  The critical stress intensity criterion is applied by 
substituting into Eqn. 2, the measured specimen dimensions and failure stresses to calculate the 
corresponding critical values of the stress intensities.  The critical stress intensities so obtained do not 
show a systematic variation with epoxy thickness suggesting they are universal parameters that can 
be used to correlate fracture initiation.  The solid line of Figure 3 denotes the predicted failure stress 
based on the critical stress intensity fracture initiation criterion .  It 

accurately describes the variation of the measured failure stresses with epoxy thickness a.  Although 
the results for the two-dimensional interface corner butt-joint specimens are not presented in detail 
here, the critical stress intensities also do not show a systematic variation with the geometry and the 
variation of the measured failure stresses with epoxy thickness is accurately described by the critical 
stress intensity fracture initiation criterion .  Note that the strength of 

the stress singularity is different in this case, thus the units of the corresponding stress intensity are 
also different as is the variation in the measured failure stress with epoxy thickness. 
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Figure 3: Measured failure stress versus epoxy thickness.  The solid line is the prediction based on a 
constant critical stress intensity of 35.03 mmMPa6.6=D

crK . 
 
The success of the critical stress intensity failure criterion requires that the elastic asymptotic solution 
of Eqn 1 accurately describes the actual solution in some region surrounding the interface corner 
where fracture initiation occurs.  The size of the region in which the asymptotic solution accurately 
approximates the full-field solution obtained from finite element calculations (within ten percent 
error) as measured along the ray bisecting the aluminum/epoxy interface is roughly 0.014mm for the 
specimens with the thinnest epoxy layer (a = 0.05mm) and 0.3mm for the thickest epoxy layer (a = 
1.1mm).  We also examined the region of dominance along other rays emanating from the bimaterial 



interface corner on the interface and in all cases, the region of dominance is larger along any other 
ray.  Although this is relatively small compared to the specimen size, it is larger than the finite corner 
radius, which is less than 8 µm.  It is also larger than any plastic zone size, which can be estimated 
using the von Mises yield criterion applied to the elastic asymptotic solution for the three-
dimensional interface corner and is on the order of 2 µm [3].  Thus the correlation of fracture 
initiation based on a critical value of DK 3 =  seems reasonable. D

crK 3

 
 
CONCLUSIONS 
 
We demonstrated an approach to characterize fracture initiation at three-dimensional bimaterial 
interface corners using critical values of the stress intensities that arise in a linear elastic analysis.  
We designed and fabricated a series of two-dimensional and three-dimensional 
aluminum/epoxy/aluminum butt-joint specimens with interface edges and corners, respectively.  We 
mechanically loaded them to failure in four-point flexure.  The measurements produced a critical 
nominal load (critical nominal stress), but these varied significantly with bond thickness and thus 
invalidated their use as critical values to correlate fracture initiation.  From a rigorous analysis of the 
interface corner stress state, we determined the order of the stress singularity, the angular variations 
of the stress and displacement fields, and the corresponding stress intensity for the specified loading.  
The critical stress intensities obtained from the failure loads did not show a systematic variation with 
adhesive thickness, a feature suggestive of the universal nature of the criterion. 
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