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ABSTRACT 
 
An artificial neural network (ANN) based model was developed, trained and evaluated for studying the dry 
sliding wear behavior of Fe-2%Ni based powder metallurgy (P/M) alloy as a function of heat treatment. The 
P/M alloy in the as-sintered (designated AS, hardness 7 HRC) as well as in the hardened and tempered at 
813 K (designated HT1), and at 593 K (designated HT2) conditions having hardness 30 HRC and 40 HRC 
respectively were investigated for their wear behavior.  Several different ANN back-propagation models 
with different layers/slabs connections, weights with various weight updating methods, and activation 
functions including logistic, symmetric logistic, linear, Gaussian, and Gaussian complement were trained. 
The presented ANN back-propagation model with logistic activation function exhibited the excellent 
statistical performance both in the training and evaluation phases. The wear rate was found to decrease 
initially and remain almost constant with increasing sliding distance in all the samples. This was consistent 
with the experimental observations.  Based on the ANN trained model, wear rate predictions were made for 
higher hardness (60 HRC) for steel with varying percent of carbon contents (0.3%, 0.4% and 0.6%). Since, 
the ANN trained model exhibited excellent comparison with the experimental results, it will provide a useful 
predictor for dry sliding wear rates in powder metallurgy alloys.  
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INTRODUCTION 
 
Artificial Neural Networks (ANNs) are revolutionary computing paradigms that try to mimic the biological 
brain. These ANNs are modeling techniques that are especially useful to address problems where solutions 
are not clearly formulated [1] or where the relationships between inputs and outputs are not sufficiently 
known. ANNs have the ability to learn by example. Patterns in a series of input and output values of 
example cases are recognized. This acquired “knowledge” can then be used by the ANN to predict unknown 
output values for a given set of input values. Alternatively, ANNs can also be used for classification. In this 
case, the Artificial Neural Networks’ output is a discrete category to which the item described by the input 
values belongs. ANNs are composed of simple interconnected elements called processing elements (PEs) or 



artificial neurons that act as microprocessors. Each PE has an input and an output side. The connections are 
on the input side correspond to the dendrites of the biological original and provide the input from other PEs 
while the connections on the output side correspond to the axon and transmit the output.  Synapses are 
mimicked by providing connection weights between the various PEs and transfer functions or thresholds 
within the PEs. Figure 1 illustrates a simple processing element of an ANN with three arbitrary numbers of 
inputs and outputs [2].       
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Figure 1 Processing element of an ANN model with three arbitrary
numbers of inputs and outputs 
f the PE results from the sum of the weighted inputs and can be negative, zero, or positive. 
e synaptic weights, which represent excitatory synapses when positive (wi>0) or inhibitory 
ive (wi<0). The PEs output is computed by applying the transfer function to the activation, 
t of the synaptic weights, can be negative, zero, or positive. The type of transfer function to 
s on the type of ANN to be designed. Currently, back-propagation is the most popular, 
sy to learn model for complex networks [2,3]. To develop a back-propagation neural 
loper inputs known information, assigns weight to the connections within the network 
 runs in the networks repeatedly until the output is satisfactorily accurate.  The weighted 
onnections allows the neural networks to learn and remember [4]. In essence, back 
ing adapts a gradient-descent approach of adjusting the ANN weights. During training, an 
d with the data thousands of times (called cycles). After each cycle, the error between the 
d the actual outputs are propagated backward to adjust the weights in a manner that is 
uaranteed to converge [5]. 

tallurgy processing has the advantage of forming near net shaped components.  The 
oducing complex shapes with close dimensional control at high density (porosity <2%) are 
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the distinct advantages of this process. There is no published research data in the area of artificial neural 
network for predicting the wear behavior for P/M alloys. Hence artificial intelligence approach has been 
used in the present study so that the recent investigation [6] on wear behavior of P/M alloys can be 
interpreted over a wide range of processing/design parameters.  

 

ANN BACKPROPAGATION MODEL  
 
The neural network used for the proposed model was developed with NeuroShell 2 software by Ward 
Systems Group, Inc., using a back-propagation architecture with multi- layers jump connections, where 
every layer (slab) is linked to every previous layer. The network was trained for wear rate. The inputs were 
sliding distance (500 through 6000 m), hardness (7 HRC, and 40 HRC), and carbon contents (0.3% and 
0.4%), and outputs were the wear rate. The number of hidden neurons, for which the logistic activation 
function, f(x)=1/{1+ exp(-x)} was used, was determined according to the following formula [7]:  
 
Number of hidden neurons = 0.5(Inputs + Outputs) + √(Number of training patterns) 
 
Training data for the neural network training was obtained from the recent research work [6]. In the research 
dry sliding wear rate tests were carried out on a standard pin-on-disc machine. The data consisted of 
variation of wear rates with sliding distance as a function of heat treatments. Three different heat treatments 
were used which were: (1) AS, as-sintered, (2) HT1, hardened and tempered at 813 K, and (3) HT2, 
hardened and tempered at 593 K. Materials with two different carbon contents of 0.3% and 0.4% were 
tested.  The training sets (total 100 experimental data points) included data corresponding to heat treatments 
'AS' and 'HT2', and data corresponding to 'HT1' treatment (total 50 experimental data points) were used to 
evaluate the trained model. 
 
Training ANN model  
 
Network training is an act of continuously adjusting their connection weights until they reach unique values 
that allow the network to produce outputs that are close enough to the desired outputs. This can be compared 
with the human brain, which basically learns from experience.  The strength of connection between the 
neurons is stored as a weight-value for the specific connection. The system learns new knowledge by 
adjusting these connection weights. The learning ability of a neural network is determined by its architecture 
and by the algorithmic method chosen for training. The training method usually consists of one of three 
schemes: 
(1) Unsupervised learning where no sample outputs are provided to the network against which it can 
measure its predictive performance for a given set of inputs. The hidden neurons must find a way to 
organize themselves without help from the outside.   
(2) Reinforcement learning where the connections among the neurons in the hidden layer are randomly 
arranged, then reshuffled as the network is told how close it is to solving the problem. Reinforcement 
learning is also called supervised learning, because it requires a teacher. The teacher may be a training set of 
data or an observer who grades the performance of the network results.  
Both unsupervised and reinforcement suffers from relative slowness and inefficiency relying on a random 
shuffling to find the proper connection weights. 
(3) Back propagation method is proven highly successful in training of multi-layered neural nets. The 
network is not just given reinforcement for how it is doing on a task. Information about errors is also filtered 
back through the system and is used to adjust the connection weights between the layers, thus improving 
performance.  
 
The accuracy of the developed model, therefore, depends on these weights. Once optimum weights are 
reached, the weights and biased values encode the network’s state of knowledge. Thereafter, using the 
network on new cases is merely a matter of simple mathematical manipulation of these values. 
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In the present research, several different ANN back-propagation trial models with different layers/slabs 
connections, weights and activation functions (including linear, Tanh, Tanh15, Sine, Symmetric Logistic, 
Gaussian, Gaussian Complement, etc.) were trained. In addition, pattern selections including “Rotation” and 
“Random” were used with weight updates using Vanilla, Momentum and TurboProp. The presented ANN 
back-propagation model with logistic activation function, "Rotation" for pattern selection, and "TurboProp" 
for weight updates was the best one among all other trials, which converges very rapidly to reach the 
excellent statistical performance (as illustrated in System Performance). Figure 2 demonstrates the graphical 
comparisons between the actual experimental data and the network predicted output during training and 
evaluation phases.  They clearly demonstrate very good agreement between the actual and predicted 
performance.  
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Figure 2 Wear rate vs. sliding distance - ANN training and evaluation performance 

 
System Performance 
 
The neural network used for the presented model demonstrated an excellent statistical performance as 
indicated by the R2 and r values. During network training, R2 was obtained as 0.9993 and 0.9237 during 
network evaluation, which were very close to 1.0 indicating a very good fit between the actual and the 
network prediction.  R2 is a statistical indicator usually applied to multiple regression analysis, and can be 
calculated using the following formulae [7]: 
 
 R2 = 1 - (SSE/SSyy) 
 
Where SSE = Σ (y - y)2, SSyy = Σ (y - y)2, y is the actual value, y is the predicted value of y, and y is the mean 
of the y values. 
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The correlation coefficient, r is a statistical measure of the strength of the relationship between the actual vs. 
predicted outputs.  The r coefficient can range from -1 to +1. It will show a stronger positive linear 
relationship when r is closer to +1, and a stronger negative linear relationship when r is closer to -1. During 
network training, r values were obtained as 0.9997, and 0.9699 during network evaluation, which were very 
close to +1.0 indicating a very good fit between the actual and the network prediction. The following 
formulae [7] were used to calculate r:   
  
 r = SSxy /√ (SSxx SSyy)  
Where 
 SSxy = Σ xy - (1/n){(Σ x)(Σ y)} 
 
 SSxx = Σ x2 - (1/n)(Σ x)2 
 

SSyy = Σ y2 - (1/n)(Σ y)2 
 
where n equals the number of patterns, x refers to the set of actual outputs, and y refers to the predicted 
outputs.  

 
 
PREDICTION OF WEAR RATE  
 
 
Based on the ANN trained model, wear rates were predicted as a function of sliding distance for P/M steel 
having hardness 60 HRC and carbon contents at 0.3%, 0.4%, and 0.6% as shown in Figure 3.  It may be 
observed that the wear rate is sensitive and decreasing with the increase in carbon content up to about 4000 
m sliding distance.  Beyond a sliding distance of 4000 m, the wear rate remains constant and the same 
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Figure 3 ANN network predicted wear rate vs. sliding distance 
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irrespective of the carbon contents. Figure 3 clearly predicts that the P/M alloy with 0.6% carbon content 
and 60 HRC hardness has the minimum wear rate (i.e. having maximum wear resistance) as compared to the 
other cases having lower carbon contents (0.4% & 0.3%). This is a valid observation since the addition of 
carbon usually contributes to improved hardness (by forming interstitial solid solution of carbon in iron 
lattice) in steel and thereby resulting in improved wear resistance property.  
 
CONCLUSIONS 
 
ANN Back-propagation model developed for studying the dry sliding wear behavior of powder metallurgy 
(P/M) alloys exhibited results consistent with the experimental findings. The prediction of wear behavior for 
P/M steel at higher hardness and/or higher carbon content is accurate and reliable with the expected trend. 
Hence, the present ANN based model can be used successfully over a wide range/combination of wear 
properties in P/M steel.  
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