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Introduction and an illustrating example

The method of hole drilling near the crack tip is often used in fatigue damage repair. In the survey by Shin
et al. (1996) comparisons with alternative methods are presented and it is concluded that hole drilling was
most effective. A number of experimental results are presented. In a recent paper by Thomas et al. (2000)
optimum location of the drilled holes are discussed. The specific problem of a centre cracked plate is stud-
ied with four relatively large holes (20—40 mm) placed symmetrically relative to the crack. Only circular
holes are applied.

From shape optimization we know that the circular shape is by no means optimal, see e.g. Pedersen (2000,
2001). It is therefore important to find the shape of a hole, which in the most effective way, releases the
stress concentration. A simple parametrization, used in earlier shape optimizations, is applied and it is
shown that an almost uniform stress state can be obtained along the boundary of the hole. The shape of
the hole is described by the superelliptic equation

(x/a)" + (v/b)" =1 (1)

where the x direction is the direction of the crack. If we use a square design domain a = b (supercircle),
then the only design parameteris 7 . We show in figure 1 three designs correspondingto = 2 (circular),
n = 2.5 (optimized) and 5 = 6. In the figure it is, by the red areas added to the boundary of the hole,
illustrated how the strain energy density varies along the boundary of the hole (the same technique is ap-
plied in figures 3, 4 and 5). Values for relative maximum strain energy densities for the three designs are
1.00, 0.67 and 1.13 corresponding to relative maximum tangential stresses 1.00, 0.82 and 1.06 . We
note that considerably better distributions of stresses can be obtained. Even more uniform fields along
the hole boundary can be obtained when more design parameters are included.

Figure 1: The eﬁergy distribution around half the holes, corrésponding to n = 2.0, 2.5 and 6.0.

The objective of the optimal shape design in relation to cracks is not completely clear. At first we may
argue that the objective should be to minimize the stress intensity factor. However, for non—sharp crack



tips the interpretation of the stress intensity factor is not clear. Thus we choose to minimize the maximum
tangential stress at the boundary of the drilled hole. In the case of plane stress this also corresponds to
minimizing the maximum von Mises stress or the energy density. For the cases of non—isotropic materials

it seems most relevant to minimize the maximum energy density.
Stresses, stress intensity and energy release

We analyze the elementary case of Isida (1971), shown in figure 2 (the small hatched part corresponds
to figure 1). With stressload ¢ in the y—direction the crack tip field expressed in principal stresses o, o,
with direction y for the o,—direction is

o, = o(cos2 + 251n0) , 0, 0(0052 2sm0) , Y 7] +
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with the geometry factor f; available in tables or graphs (for a/w = 0.4, h/w = 0.5 we find
f; = 1.63). A finite element model (FEM) with a minimum element size of 6 - 107>w and with
17300 degrees of freedom confirms this result. Two alternative methods (not described in the literature)
for determining K, confirm the value of f;| with great accuracy. In the first method the fracture mechan-
ics model and the FEM are only coupled through the matching of energy in a crack tip domain. In contrast
to methods based on the /—integral we perform a domain integration (summation) that can be taken di-
rectly from a finite element model. In the second method the energy release G = — dIl/da = Klz/E
is found directly from a changed model, say with 4a = a - 10 =2 . (IT is the total potential).
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Figure 2: The analyzed elementary case with w = 100 mm , indicating also the area of the graphs (hole size =1 mm).
Analytical stress fields at the crack tip (without hole) as a function of 6 are shown for four cases of orthotropy and for isotropic
material. The colour code is best shown in the o, graph, where from below we have E./E; = 0.25,0.5,1.0,1.5,2.0, respec-
tively.



Because we shall also optimize shapes of holes in orthotropic materials, it may be informative to show a
graph of the principal stresses (2) for the extended cases of E./E; = 0.25, 0.50, 1.0 (isotropic) , 2.0
and 4.0 where E - is the modulus in the crack direction, and E; is the modulus in the transverse direc-
tion. (In all cases we kept the major Poisson ratio v, = 0.3 and E;/G.; = 2.6 ) . By the method de-
scribed above, the relative K; values for these cases are determined to 1.35,1.13,1.0,0.90,0.82, i.e.
increasing with increasing flexibility in the crack direction. In figure 2 the actual model is shown together
with the fracture mechanics analytical solutions. The blue curve is the isotropic case of eq. (2) and the red
curve corresponds to E/E, = 0.25, i.e. the case for which optimal shape will be shown.

Sensitivity of the optimal shape

The example shown in the introduction is based on a number of assumptions and a study of the sensitivity
to these assumptions is needed.

Influence from the external load and size of the hole. Different external loads can be examined, either

given stresses (forces) or given forced displacements. As expected only little influence is seen as long as
the crack is loaded mostly in mode I. This follows from the fact that the near crack tip field will, as a func-
tion of the external load, only change with a common factor (the stress intensity factor). Optimization for

cracks in mode II, mode III and combined modes needs further studies.

In table 1 we show the relative concentration of the energy density, for different size of the holes and for
two alternative load cases. In all cases the best of the analyzed designs correspond to a superelliptic power
of n = 2.5 . Relative to the size of the hole (0.5,1.0,1.5 and 2.0 mm) , with the 1 mm size as reference,
we got 1.92,1.00, 0.68, 0.52, and larger holes naturally gives a more efficient stress release. The size
of the hole is assumed to be determined by alternative considerations.

Shape parameter n=20 |n=225|7n=25|3n=30|yp=35|n=40 | n=45
size stress load 1.0 0.857 0.840 0.876 0.934 0.994 1.05
0.5 mm |displ. load 1.0 0.854 0.835 0.863 0.916 0.973 1.03
size stress load 1.0 0.857 0.843 0.894 0.970 1.05 1.13
1.0 mm |displ. load 1.0 0.852 0.833 0.875 0.944 1.02 1.09
size stress load 1.0 0.856 0.842 0.895 0.974 1.06 1.14
1.5 mm |displ. load 1.0 0.850 0.830 0.872 0.943 1.02 1.10
size stress load 1.0 0.854 0.841 0.894 0.973 1.06 1.15
2.0 displ. load 1.0 0.847 0.826 0.866 0.937 1.01 1.09

Table 1: Relative values of maximum energy density (for a circle, # = 2, the value is set to 1.0 ) . Corresponding values for
stress are equal to the square—root of the shown values. Optimized values are shown in bold.

Influence from material power law non—linearity. In figure 3 is shown results based on analysis with mate-

rial non—linearity. As expected from earlier results (Pedersen 2001) the optimal shape of the hole is rath-
er insensitive to the power p (p < 1) of the non—linearity. We still obtain almost uniform energy density
(here von Mises stress) along the boundary of the hole. The isolines show equal levels of reduced stiffness,
described by the factor (e./€,)” ,where e, is effective strain and ¢, is the corresponding value that gives
the transition from linearity to non—linearity. The assumptions behind the calculations leading to the re-
sults in figure 3 correspond to deformation theory with a power law of p = 0.1 . Relative values for these



results are for the squared maximum von Mises stress 1.0,0.98 ,1.11 and for the minimum stiffness re-
duction factors 0.305, 0.336, 0.280 .
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Figure 3: Isolines of stiffness reduction based on material non—linearity. The three designs correspondto # = 2.0,2.5 and
6.0 asin figure 1.

Influence from material anisotropy. It is expected that anisotropic material behaviour will influence the
optimal shape to a large extend, see Pedersen, Tobiesen and Jensen (1992). When the material is stiffer
in the crack direction we see little influence on the optimal shape, but when it gets more flexible in the
crack direction the influence is important. We have illustrated this in figure 4, where the ratio of the two
moduliissetto E-/E; = 0.25.

The left most design is the optimized design of # = 2.5 from the isotropic case, which with only one de-
sign parameter (7) is improved to the middle design of # = 4.0 . We note that an energy concentration
will always appear for these pure superelliptic designs. With one modification function to the shape of the
hole, as described in details in Pedersen et al. (1992), we obtain the right most design with almost uniform
energy density along the hole boundary. Actual relative maximum values of energy density for the three
cases are 1.0,0.98,0.78 and for maximum principal stresses the values are 1.0,0.91, 0.89 . A study of
the stress fields shown in figure 2 (see especially the red o, curve), may give an understanding for the
need of more advanced designs for these cases. From the results, the two parameter description seems
sufficient.

Figure 4: Levels of energy density for E. = 0.25E; corresponding to superellipticdesign with n = 2.5 totheleftand n = 4.0
in the middle. The design to the right is a two parameter design with # = 4.0 and one modification function.



Influence from the domain of the hole. By including the elliptic halfaxes a, b as design parameters (the

added condition of a - b = constant practically fixes the area of the hole), we may improve the optimal
design results further. In figure 5 are shown the results corresponding to a/b = 1.0,0.9,0.8,0.7, 0.6,
and 0.5 , illustrating the levels of squared von Mises stress. Note that in all cases we obtain almost uniform
distribution along the highly stressed boundary. The resulting relative maximum values are 1.0, 0.92,
0.84,0.75,0.66 and 0.59, and thus the superellipse has distinct advantages over the supercircle. The
optimal superelliptic power 7 change with the ratio a/b and for the solutions shown, we got n = 2.5,
24,23,2.15,2.10,1.95, respectively.

The same six designs were analyzed based on a strong material non—linearity (0e/0) 10°and again almost
constant von Mises stress were obtained along the boundary, although now decreased with almost a factor
of four. Relative to the results given for the linear solution, the values with the non—linear solution were
0.24,0.23,0.22,0.21,0.20, 0.18 , respectively. The strong non—linearity levels out the difference, but
still the possibility for smaller ratios a/b gives a better solution.
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Figure 5: Levels of squared von Mises stress for optimized superelliptic power, when the ratio a/b of elliptic axes are prescribed
to 1.0,0.9,0.8/0.7,0.6, 0.5, respectively.

Conclusion

With illustrative examples we have shown that the stress field, at the boundary of a drilled stress releasing
hole, can be significantly improved. To a large extend the one parameter superelliptic shape is able to re-
turn a field of constant tangential stress along the boundary. This will diminish the possibility for further

fatigue crack initiation.
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