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ABSTRACT

The purpose of this paper is to examine the e�ect of a population of surface �aws on the
time to failure of glass under static loading and subject to stress corrosion. The roughness of
the glass surface is mapped onto a set of parallel elliptical cracks. The presence of the cracks
modi�es the stress �eld within the material and induces a shielding of the stress at the cracks
tips which increases the lifetime of the material. We show that this e�ect becomes important
when the length of the cracks is comparable to the distance separating them.
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INTRODUCTION

An important practical problem is to predict the lifetime of a piece of glass under stress. The
failure time depends upon the surface state, the loading and also on the environment. This
delayed failure of glass is associated with the stress-corrosion growth of pre-existing tiny sur-
face defects in the presence of humidity. The corrosion process has the important consequence
that any (su�cient) stress tends to lengthen the �aw and that �nally the object breaks after
the �aw has reached a critical length. While the fundamental nature of these �aws remains
unclear since it is di�cult to observe them directly, the presence of surface defects has been
clearly highlighted in various experimental conditions [1, 2, 3]. Mechanical contacts or thermal
shocks can for example be responsible for surface cracks. However it is well known that freshly
drawn �bers can be broken in a stress-corrosion regime while AFM studies could not reveal any
�aw on their surface [4]. Later studies [5] showed that the nanometer scale roughness of the
�ber surface presented long range correlations (up to 100nm); the surface is in fact self-a�ne
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[6], meaning that it is statistically invariant under the transformation x ! �x and z ! �Hz,
where x is a distance in the mean plane of the surface and z a height di�erence. Here H is
the Hurst exponent where 0 < H < 1. Note that this very gentle roughness is responsible
for �uctuations of the tangential stress at the surface, (see Ref.[7] for direct calculations of
the stress �eld from the knowledge of the roughness v ia conformal mapping). In other words
even if there is no evidence for �aws on the glass surface, there can be stress concentration
e�ects due to the roughness. We, actually, propose in this work to map a rough surface onto
a set of elliptical cracks distributed over a plane surface so that they are responsible for the
same local stress concentrations. Then, we investigate the variations of the time to fracture
due to the distribution of cracks. Moreover, we will consider that �aws are microcracks with
atomically sharp tips which emerge normally at the external surface of the glass. Thus, we will
not consider possible crack blunting [8, 9]. The glass is supposed to be perfectly elastic and
submitted to constant remote tension. Due to the presence of neighboring cracks, the stress
at the tip of each crack is altered and the cracks do not longer behave as isolated cracks. The
following section describes the model used to take into account the cracks interactions in the
growing process of the surface �aws.

DESCRIPTION OF THE MODEL

Initial con�gurations of the crack : We �rst start by considering a one dimensional self-
a�ne pro�le with H = 0:8 consisting of M facets of size l when projected onto the horizontal
plane. The lengths l and L =Ml correspond respectively to the lower and the upper scales of
the self-a�ne description. Furthermore, the average slope, s, of the facets are small enough to
allow for the computation by conformal mapping [7] of the local stresses when the pro�le is con-
sidered under uniaxial tension �0. Since our interest focuses on the subpart of the pro�le where
the stress is concentrated, parts of the pro�le where the stress is lower than �0 are removed
from the computation. We then select from the remaining set of stress the local stress maxima
i.e. parts of the pro�le where the stress is higher than the two closest remaining stresses. To
each of the remaining stresses � is associated an equivalent elliptical crack a long by l wide
which is under a uniaxial stress �0. The length of the hole is chosen so that the stress at the tip
of the major axis is the one obtained by the conformal mapping method i.e. � = �0(1� 2a=l).
The roughness of the pro�le is thus mapped onto a set of parallel elliptical cracks that emerge
normally to the external surface. The average distance, b, between the cracks is of the order
of few l and the cracks spread over a horizontal distance L. The self-a�ne pro�le generated
is made of 20 to 200 facets and the �nal set of cracks typically contains from 5 to 50 cracks.
The set of cracks is then reproduced by translation of constant steps L (periodic boundary
conditions); the �nal crack con�gurations is thus a succession of identical sub-cracks set that
contains cracks of various lengths.

Determination of the stress intensity factors : It is well known that the problem of
a linear elastic solid with N cracks can be represented as a superposition of N problems in-
volving one crack but loaded by unknown tractions induced by the other cracks and the remote
loading; the so called �pseudo tensions� method [10, 11]. These tractions can be interrelated
through a system of integral equations [12]. Recently, a simple and e�cient technique to solve
this problem based on the superposition technique and the idea of self-consistency applied to
the average tractions on individual cracks has been proposed [13, 14]. The key assumption
of the method is to decompose the stress on a crack into a mean part and a �uctuating part
and to neglect the e�ect of the �uctuating stresses in the interactions. Thus the traction shed
on a given crack by a second crack results from the uniform average traction on the second
crack. This results in a major simpli�cation of the problem, self-consistency imposing then to
the averaged stresses to be the solution of a simple linear system. Other techniques using a
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Figure 1. Curves of KI=KI0 vs a=b for a semi in�nite elastic plane containing
a periodic array of N parallel cracks of same lengths a separated by a constant
distance b and subjected to a uniform uniaxial stress �0 acting in a direction
perpendicular to the cracks. KI0 = 1:12�0

p
�a is the stress intensity factor for

an isolated crack N = 1. Filled squares and �lled circles represent the results
obtained in our model forN = 3 cracks and correspond respectively to the inner
and the outer cracks. The dashed and the solid lines show results from Isida
[16]using a body force method for N = 3. The crosses show results obtained with
our model for an in�nite sequence of parallel cracks, these results are compared
to the data of Bowie (long dashed line) [17].

polynomial approximation of the stress non-uniformities were also proposed [15], the method
presented here is more e�cient in terms of calculation time and was found su�ciently accurate.
Figure 1 compares results obtained by this method to other works[16, 17]. We see that while

the ratio between the crack size and the distance between them is small enough, the results
are in good agreement with previous works. Yet, discrepancy appears when the cracks length
becomes of the order of the distance between them. This discrepancy comes from the fact that
the non-uniformities of the tractions are not taken into account in our model. Moreover, it can
be shown that the approach used is only valid for KI=K0 > 2=3; this lead to a major restriction
on the ratio between the crack length a and the distance between them b which has to be less
than unity.
Crack propagation law : From the experimental studies [8, 18, 19, 20], it is clear that crack
velocity is strongly a�ected by the stress assisted corrosion reaction between the glass and the
corrosive species in the atmosphere. Moreover, it appears that the velocity is uniquely related to
the stress intensity factor. Depending on the stress intensity factor, three di�erent regions are
observed. In our work we mainly focus on the so called Region I which corresponds to the low
speed regime. In this domain, the speed of the crack typically lies between 10�10and 10�5m:s�1.
In the other regions, crack propagation is fairly rapid and the range of stress intensity factors
involved is narrow. Thus for long enough test times the contribution to the time before rupture
in these regions is negligible.
Wiederhorn et al [19] carefully studied the low speed domain of the crack growth for various

glasses and various environmental conditions. The data were found to �t the equation :
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(1) v(KI) = v0exp(
�E� + cKI

RT
);

where v(KI) is the crack velocity, T the temperature. E�is the apparent activation energy at
zero load and c is the stress intensity factor coe�cient. In this work we set the activation energy
to zero. This has the consequence that under any applied stress, all the cracks are allowed to
grow independently of their length. By normalizing the speed by the speed v0 of the cracks at
small stress intensity factor, equation 1 becomes :

(2) v(KI) = exp(c�KI)

with c� = c=RT . The di�erent steps of the simulation can be summarized as follows. We �rst
compute the initial crack con�guration. Using the method described in ??, the stress intensity
factor at the tip of each crack is calculated. The speed of each of the cracks is obtained
using the crack growth law chosen (Eq. 1). The length of each crack is then incremented by
�a = v(KI)�t where �t is a �xed time step. The computation of the stress intensity factors
and the crack growth are iterated until one of the cracks reaches the critical stress intensity
factor KIc above which failure of the sample occurs. The lifetime of the material is de�ned as
the time needed by the crack that reaches KIc the �rst to grow from its initial size to its �nal
length.
In the following, we will study the e�ect of the cracks interactions on the life time of the

material. We will �rst consider a single crack con�guration.

QUALITATIVE DESCRIPTION OF THE CRACK GROWTH

Figure 2 shows, for a single crack con�guration, the evolution of the ratio between the stress
intensity factor for each of the cracks and the stress intensity factor of the cracks when consid-
ered as isolated. For small cracks size, which corresponds to the beginning of the simulation,
the ratio of the stress intensity factors is close to one, meaning that each crack can be seen has
isolated. But while the crack length increases, this ratio decreases until one of the cracks is
long enough so that KIc is reached and that fracture occurs. We see from this example that the
presence of a neighbourhood of cracks results in a decrease of the stress intensity factors. Due
to this shielding e�ect, the speed of each crack is lower than what it would have been in the
absence of shielding. The progression of the cracks is thus slowed down and as a consequence
the lifetime of the material increases. Here the increase of the lifetime is of the order of 35%.
When the shielding e�ect is absent and since the longest crack has the highest velocity, it is
always this crack that reaches KIc the �rst. But it has to be pointed out that for some crack
con�gurations, the shielding on the longest crack can be strong enough so that another crack
which was not intially the longest one reaches KIc the frist. The shielding e�ect, thus, strongly
depends on the initial cracks con�guration. In the next section, we investigate the e�ect of the
statistical distribution of the crack lengths on the lifetime of the material.

QUANTITATIVE RESULTS

Depending on the self-a�ne pro�le generated, di�erent crack con�gurations can be obtained.
These con�gurations di�er in the the crack lengths and also in the arrangement of these cracks
and, thus, each con�guration will lead to a di�erent lifetime.
Figure 3 shows the distribution of the ratio between the lifetime and the lifetime of the

material when the longest crack is considered as isolated. We see that the times ratios are
always larger than 1, meaning, as discussed previously, that the interactions between the cracks
increase the life time of the material. Con�gurations obtained using s = 0:1 give rise to a broad
distribution of lifetimes which gets sharpes when s decreases.
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Figure 2. Evolution of the stress intensity factor for a single crack con�guration
as a function of the length ai of crack i. A self-a�ne pro�le with roughness
exponent H = 0:8 made of M = 15 facets of average slope s = 0:1 under uniaxial
tension �0 = 1 is used to generate the con�guration made of 5 cracks. Here,
the relationship between the speed of the crack and the stress intensity factor is :
v(KI) = exp(KI) and KIc = 1. b is the distance between the cracks. KI(ai) is the
stress intensity factor of the crack i when cracks interact. KI0(ai) = 1:12�0

p
�ai

corresponds to the stress intensity factor of an isolated crack of length ai .

This e�ect is mainly due to the change in cracks lengths when the self-a�ne pro�le generated
gets smoother. In fact, a decrease of the facets slope changes the length of the cracks that shrinks
and as a consequence the ratio between the crack length and the distance separating them is
decreased. For the con�gurations studied, the average crack length referred to the distance
separating them is < a > =b = 8:10�2 when the facets slope s is 0:1, while for s = 0:01 this
ratio is 8:10�3 and drops to 8:10�4 when s = 0:001. As shown in the previous section, this will
deeply in�uence the shielding e�ect, that has less in�uence on the growing process when the
ratio a=b << 1.
For small < a > =b, the cracks grow as if they were isolated, and as a consequence the lifetime

of the material is close to the time to failure without shielding. When < a > =b becomes large
enough, the shielding e�ect becomes important and this has a strong e�ect on the life time
which can be quite larger than the life time without interaction.

CONCLUSION

We have developed a model of crack growth where the modi�cation of the stress �eld due to the
presence of neighboring cracks is taken into account. Our model allows for the computation of
the stress intensity factors of a set of parallel sharp surface cracks submitted to tensile stresses.
This model has been applied to stress corrosion growth of pre-existing surface �aws. The initial
�aw con�guration is obtained by mapping the self-a�ne roughness of the external surface of
the glass considered under tension onto a set of parallel elliptical cracks. The growing rate
of each crack is uniquely related to its stress intensity factors by a relation that �ts previous
experimental works. We have shown that the presence of neighboring cracks lead to a shielding
of the stresses at the tip of the cracks and to an increase of the time to failure. Moreover this
increase of the lifetime becomes non negligible when the shielding e�ect is important. This is



NUMERICAL STUDY OF THE TIME TO FAILURE OF GLASS UNDER STRESS CORROSION 6

1.00 1.25 1.50
u = t / t0

0.00

0.10

0.20

P
(u

) 
d

u

Figure 3. Distribution of the ratio of lifetime, t, when interaction are taking
into account to the lifetime, t0, in the absence of interactions. The data were
obtained using 600 initial crack con�gurations generated using self-a�ne pro�les
made of facets of di�erent slopes s. Solid, dotted and long dashed lines correspond
respectively to s = 0:1, 0:01 and 0:001. The crack velocity law used is v(KI) =
exp(KI) and KIc = 1.

achieved when the crack lengths become of the order of the distance separating them. We have,
also, pointed out that, due to shielding and depending on the crack con�guration, others cracks
than the longest can lead to the failiure of the sample. The e�ect of the remote tension an the
lifetime has been studied also and it appears that the shielding e�ect has a strong in�uence
on the lifetime when the remote tension is decreased. Further work is presently carried on to
characterize the distribution of lifetime in terms of a Weibulh distribution.
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