
ORAL/POSTER REFERENCE: ICF100561OR 
 
 
 
 
 
 

NUMERICAL SIMULATIONS OF DYNAMIC INTERFACIAL 
FRACTURE PHENOMENA  

 
 

T. Nishioka 1, Q. Hu 1 and T. Fujimoto 1 
 

1 Department of Ocean Mechanical Engineering, 
Kobe University of Mercantile Marine, 

5-1-1 Fukae Minamimachi, Higashinada-ku, Kobe 658-0022, JAPAN 
 
 
 

ABSTRACT 
 
In this paper, first, to extract mixed-mode stress intensity factors for interfacial cracks subject to impact 
loading as well as for dynamically propagating interfacial cracks, the component separation method of the 
dynamic J integral is developed. This method is more advantageous than the M integral method often used 
for interfacial crack problems, since the present method requires no auxiliary solution field that is sometimes 
not possible to construct in the M integral method. Next, dynamic interfacial crack propagation is simulated 
by using a moving finite element method. The dynamic J integral, and the separated dynamic J integrals 
which have the physical significance of the energy flow rate from individual material side, and the stress 
intensity factors are evaluated.  
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INTRODUCTION 
 
In recent years, dynamic fracture mechanics for nonhomogeneous materials has been a focus of much 
attention because of the broad applications of composite materials and jointed materials to important 
structures. For dynamic fracture mechanics, Nishioka and Atluri [1] derived the path-independent dynamic J 
integral, which has the physical significance of energy release rate. Furthermore, for dynamic interfacial 
fracture mechanics, Nishioka and Yasin [2] have recently developed the separated dynamic J integrals, which 
are equivalent with the separated energy release rates from individual material sides.  
 
Also, some fundamental features of dynamic interfacial cracks have been discussed by Yang et al. [3] and 
more recently by Shen and Nishioka [4]. These two aspects set up the important basis of current component 
separation method. In early works on extracting mixed-mode stress intensity factors for interfacial cracks, 
Yau and Wang’s M integral method [5] is commonly used. However, it is sometimes difficult to set up the 
auxiliary solution field that is necessary in the application of their method. For some complicate conditions 
such as crack kinking and branching, it is hard to get the auxiliary solution. Recently, the component 
separation method [6] has been extended to static interfacial crack problems [7]. This method has great 



advantages over the M integral method, since no auxiliary solution field is needed. 
 

In this paper, first, for dynamic interfacial fracture mechanics, the component separation method of the 
dynamic J integral is developed based on the theoretical studies of the interfacial crack tip field [3][4]. By 
choosing appropriate characteristic length and applying J-K relationship, explicit formulas for extracting the 
stress intensity factors from the dynamic J integral are derived. Next, numerical solutions of stress intensity 
factors are presented for dynamically propagating interfacial cracks. To cope with the propagating crack, a 
moving finite element method is used to comply with the dynamically moving property of crack tip.  
 
 
DYNAMIC J INTEGRAL AND SEPARATED DYNAMIC J INTEGRALS 
 
The well-known Eshelby-Rice static J integral has been widely used in static fracture mechanics. For 
dynamic fracture mechanics, Nishioka and Atluri [1] derived the path-independent dynamic J integral for a 
homogenous material as 
 

 J' k = (W+K)nk - tiui,k dS
Γε

lim
Γε→0  = (W+K)nk - tiui,k dS

Γ+Γc

+ ρuiui,k- ρuiui,k dV
VΓ-Vε

lim
Γε→0 , (1) 

 
where W and K are the strain and kinetic energy densities. Γε denotes the near field integral path, while Γ 
and Γc are the far field path and the crack face integral path, respectively (see Fig. 1(a)). The crack axis 
components of the dynamic J-integral J'k0 can be obtained by the coordinate transformation: J'k0 = αkl J' l , 
where αkl is the coordinate transformation tensor. The tangential component of the dynamic J integral J'  
has the physical significance of the dynamic energy release rate G. Thus we have 

1
0

 
 . (2) J'10 = J' = G
 
Considering a nonhomogeneous plate with a dynamically propagating interfacial crack as shown in Fig. 1(b), 
recently Nishioka and Yasin [2] have derived the separated dynamic J integrals as 
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lim
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 (m=1,2), (3) 

 
where ΓI

(m) (m=1,2) are the integral paths along the interface in the sides of the material 1 and 2. Also the 
crack axis components can be obtained by applying the coordinate transformation: J'k0(m) = αkl J'l (m). 
 
The separated dynamic J integrals also have the physical significance of the separated energy release rates 
G(m) (m=1,2) which are the energy flow rates from material m (m=1,2) into the propagating interfacial crack 
tip per unit crack extension. Thus, we have the following relations: 

 
 J'10 m  = G m = J'1m cosθ0 + J'2m sinθ0, (m=1,2). (4) 

   
 (a) Crack in homogeneous material  (b) Interface crack in nonhomogeneous material 

Figure 1: Definition of integral paths 



 
Furthermore, the dynamic J integral and the energy release rate can be obtained by the sum of the separated 
dynamic J integrals: 
 
 J'10 = J'10 1 + J'10 2 = G = G 1 + G 2 . (5) 
 
 
COMPONENT SEPARATION METHOD OF DYNAMIC J INTEGRAL 
 
Recently the component separation method [6] was extended to static interfacial fracture mechanics [7]. 
Furthermore, in this paper, using the dynamic J integral and the separated dynamic J integrals, the 
component separation method is extended to evaluate dynamic stress intensity factors. 
 
The dynamic J integral and the dynamic energy release rate can be related to the stress intensity factors 
[3][4] as follows: 
 
 J' 1

0 = J'10 1  + J'10 2  = G = Λ (K1
2+K 2

2)=Λ 1+α2 K1
2, (6) 

and 
 Λ = wT(H+H) w (K1

2+K 2
2)/(4cosh2πε). (7) 

 
The eigenvector w is determined by the traction resolution factor η as 
 
 wT=1

2
{ -iη  1  0 }, and η= H22/H11

1/2. (8.a,b) 
where Hij (i,j=1,2) are the components of the in-plane matrix H. The matrix H consists of three independent 
real components (H12=H21) 
 

 H = 
H11 iH12

-iH12 H22

, (9) 

 
and this matrix can be determined by the Stroh's matrix B as follows: 
 

  , and H = B(1)+B(2) B = 1
µD

 
β2 1-β2

2
i 1+β2

2
-2β1β2

-i 1+β2
2
-2β1β2 β1 1-β2

2 . (10.a,b) 

 
The wave reduction factors βi (i=1,2) and the Rayleigh wave function D have the form 
 
 β1 = 1 - ρC2/C11 , β2 = 1 - ρC2/C66 , D = 4β1β2 - 1+β2

2 2, (11.a,b,c) 
 
where C is the crack velocity while C11 and C66 are the elastic constants. The oscillation index ε is 
determined by the Dunders parameter β 
 
 ε = (1/2π) ln (1-β)/(1+β) , and β=-H12 H11H22

1/2 . (12.a,b) 
 
The crack opening displacements in the x and y directions behind the crack tip, δx and δy, are obtained in [3] 
[4] as  
 

 H11

H22
δy+iδx = 2H11 K1+iK2

1+2iε  cosh πε
r

2π
 r

l
iε, (13) 

 
where l is a characteristic length used to define the stress intensity factors. Usually l = 2a (2a is the entire 
crack length) is used. 
 



From Eqn. 13, the ratio of the stress intensity factors can be related to the ratio of crack opening 
displacements, as follows: 
 
 , α = K2 / K1 = (η - Sδy/δx)/(δy/δx + ηS)lim

r → 0
S = (tanQ - 2ε)/(1 + 2ε tanQ), and Q = ε ln(r/l ). (14.a,b,c) 

 
Taking limit is required to calculate the stress intensity factors. However, it is hard to get accurate results by 
using numerical results due to the quantity S that has the logarithmic and oscillatory singular terms. For this 
reason, and to derive explicit formulas for the component separation method, we eliminate the logarithmic 
and oscillatory singular terms S (S=0), taking tanQ=2ε. This can be achieve, choosing the following special 
character length: 
 
 l = r/eε-1tan-1(2ε) , (15) 
 
where r is the location of the nodal point at which the crack opening displacemets are evaluated. Then the 
ratio of the stress intensity factors can accurately be evaluated by 
 
 . (16) α=ηδx/δy

 
Using Eqn. 16 in Eqn. 6, the explicit formulas for the component separation method can be derived as 
 
 Kk = δk J'10 / Λ δ1

2
+δ2

2
 = δk J'10 1 +J' 1

0 2  / Λ δ1
2
+δ2

2
 = δk G / Λ δ1

2
+δ2

2 , (k=1, 2) (17) 
 
where δ1=δy and δ2=ηδx are defined as shown in Fig. 2. 
 
The transformation to the stress intensity factors with the characteristic length l'=2a or to those with a 
desired characteristic length l' can simply be conducted by the following equation: 
 

 
K'1

K'2
 = cosθ -sinθ

sinθ cosθ
 

K1

K2

, θ = ε ln l '/l . (18.a,b) 

 
Figure 2: Crack open displacements 

 
 
NUMERICAL SIMULATION RESULTS 
 
Numerical simulations are carried out for dynamically propagating cracks. Figure 3 shows the computational 
model. The dimensions of the plate are W=2L=40mm. The initial mesh pattern for the moving finite element 
method and the dynamic J integral paths are also shown in Fig. 3. We assume that the upper material 
(material 1) is more compliant than the material 2. The mismatch ratio of Young's moduli is assumed as 
λ=E(2)/E(1) =3.0 with E(1)=29.4GPa in this paper. The superscripts denote the material number. The mass 
densities and the Poisson’s ratios of two materials are assumed as the same as ρ(2)=ρ(1)=2.45×103kg/m3, 
ν(2)=ν(1)=0.286.  
 
The moving finite element method [2] is used for calculating the separated dynamic J integral. Along with 
the crack propagating, the mesh pattern for the elements around the crack tip translates in each time step in 



      
 (a) Specimen geometry (b) Initial mesh pattern (c) Integral paths 

Figure 3: Bimaterial plate with an interfacial edge crack 

order to assure enough precision. The moving element method completely satisfies the boundary conditions 
near the propagating crack tip, while a fixed element method usually violates them. We assume that the crack 
always propagates along the interface and keeps a constant velocity C. The initial crack length is set as 
a0=0.2W. 

 

 
First, the dynamic finite element analysis of a propagating crack in the homogeneous plate (λ=1.0) subject to 
constrained displacements is carried out. The velocity is assumed as 40% of the shear wave velocity, 
C=0.4Cs. Using a fictitious interface along the symmetrical line, the separated dynamic J integrals and the 
dynamic J integral are evaluated. Both types of integrals show excellent path independence through out the 
simulation. Then, the dynamic J integral values are converted to the stress intensity factors using the 
component separation method (see Eqn. 17 with ε=0).  
 
Figure 4 shows the variations of stress intensity factors. The K1 values are normalized by the static stress 
intensity factor for a semi-infinite crack in an infinite-width strip [8]: Ks = u0E 1 / L 1- ν(1) 2 . The present 
results agree with the results obtained by moving singular element method [9,10] after certain amount of 
dynamic crack propagating, and agree with the Nilsson's steady-state solution [8]. Thus, this confirms the 
validity of the component separation method of the dynamic J integral when the problem reduces to the 
homogeneous condition (ε=0). 

 
Figure 4: Normalized dynamic stress intensity factors in homogeneous plate 

   
 (a) Normalized K1 (b) Normalized K2 

Figure 5: Stress intensity factors calculated for different crack face node pairs 



 

   
 (a) Variation of normalized K1 (b) Variation of normalized K2 

Figure 6: Stress intensity factors for dynamically propagating interfacial cracks  

Next, in order to check the accuracy of the component separation method, the crack opening displacements 
at three pairs of the corner-nodes nearest to the propagating crack tip are tested. Figure 5 shows the 
variations of the stress intensity factors for different node pairs. In all cases, the stress intensity factors for 
three node pairs are almost constant. This indicates that the component separation method gives very 
accurate stress intensity factors. Also, the crack opening displacements at the nearest corner node pair give 
accurate results. 
 
The stress intensity factors for the dynamically propagating interfacial cracks are shown in Fig. 6. We can 
see that K2 has a nonzero value in all cases due to the existence of material mismatch. It is interesting to see 
that, in the early stage of dynamic crack propagation, for increasing crack velocity, the normalized K1 
decreases while the normalized K2 increases.  
 
 
CONCLUSIONS 
 
In this paper, first, in order to evaluate accurate mixed-mode stress intensity factors for dynamic interfacial 
cracks, explicit formulas for the component separation method of the dynamic J integral were derived. This 
method has more advantages than the M integral method that commonly used for interfacial fracture 
mechanics problems. The features of the component separation method can be summarized as follows: (1) It 
can be expressed by the explicit formulas. (2) It does not require any auxiliary solution field. (3) It is 
applicable using the path independent separated dynamic J integrals. (4) The signs of the stress intensity 
factors are automatically determined by the signs of the corresponding crack opening displacements. (5) 
Since its formulas do not include the oscillatory and logarithmic singular terms, the numerical results for the 
stress intensity factors are stable and accurate. In addition, the moving finite element method and the 
path-independent separated dynamic J integrals as well as the component separation method demonstrated 
their great potentials in dynamic interfacial fracture mechanics studies. 
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