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ABSTRACT 
 
Nonlinear dynamics of crack propagation is investigated experimentally and theoretically with a goal to 
clarify the nature of limiting crack velocity, the transition from steady-state to branching regimes of crack 
dynamics, the dynamics of crack arrest. Theoretical explanation of limiting steady-state crack velocity and 
the transition to branching regime was proposed due to the study of collective behavior of microcrack 
ensemble at the crack tip area. Experimental study of crack dynamics was carried out in the preloaded plate 
PMMA specimen using the high speed camera coupled with the photo-elasticity method, the point stress 
recording with a laser system, the failure surface roughness measurement.  
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INTRODUCTION 
 
The rebirth of interest in the issue of dynamic fracture is observed during last decade due to the variety of 
new experimental results which are not explainable within the prediction of classical fracture mechanics 
where it was shown [1] that the crack in infinite plane specimen has two steady-state velocities: zero and 
the Rayleigh speed. The recent experimental study revealed the limiting steady state crack velocity, a 
dynamical instability to microbranching [2,3], the formation of non-smooth fracture surface [4], and the 
sudden variation of fracture energy (dissipative losses) with a crack velocity [5]. This renewed interest was 
the motivation to study the interaction of defects at the crack tip area (process zone) with a moving crack. 
The still open problem in the crack evolution is the condition of crack arrest that is related to the question 
whether a crack velocity smoothly approaches to zero as the loads is decreased from large values to the 
Griffith point [6]. There is also problem at the low end of crack velocity. How a crack that is initially at rest 
might achieve its steady-state.  
 
 
STATISTICAL PROPERTIES OF DEFECT ENSEMBLE 
 
Microscopic and macroscopic variables for defect ensemble 
Structural parameters associated with typical mesoscopic defects (microcracks, microshears) were 
introduced [7] as the derivative of the dislocation density tensor. These defects are described by symmetric 



tensors of the form  in the case of microcracks and kiik vsvs = )(2/1 kikiik vllvss += for microshears. Here 

ν
r  is unit vector normal to the base of a microcrack or slip plane of a microscopic shear; l  is a unit vector 

in the direction of shear ; s is the volume of a microcrack or the shear intensity for a microscopic shear.The 
average of the “microscopic” tensor  gives the macroscopic tensor of the microcrack or microshear 
density 

r

iks

ikik snp =  that coincides with the deformation caused by the defects,  is number of defects. n
 
Statistical Model of Elastic Solid with Defects 
Statistics of the microcrack (microshear) ensemble was developed in terms of the solution of the Fokker-
Planck equation [7,8] in the phase space of the possible states of the microscopic variable s  concerning 

the size  and the orientation 
ik

s lv
rr, modes. This solution allowed the determination of the part of the free 

energy caused by defects. 
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Figure 1: Free energy dependence on stress and defect density. 

 
The free energy  for the nonlinear system “elastic solids with defects” corresponds to the form predicted 
by Fraenkel [9] (Fig.1). The metastability for the stress  

F
cσσ <  is the consequence of the orientation 

interaction in the defect ensemble. The free energy form, that was predicted by the statistical model, 
approaches to the Griffith form with the growth of the applied stress cσ σ→  (Fig.1). It is the 
consequence of the nucleation and growth of the defects with more pronounced orientation mode induced 
by the applied stress. 
 
 
PHENOMENOLOGY OF QUASI - BRITTLE FAILURE  
 
Free Energy 
The simple phenomenological form of the part of the free energy caused by defects (for the uni-axial case 

zzzzzzpp εεσσ === ,, ) is given by sixth order expansion which is similar to the well-known Ginzburg-
Landau expansion in the phase transition theory [7]. 
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The gradient term in (1) describes the non-local interaction  in the defect ensemble in the so-called long 
wave approximation;  are positive phenomenological material parameters, DCBA ,,, χ  is the non-
locality coefficient.  
 



Damage Kinetics in Quasi-Brittle Failure  
The damage kinetics in quasi-brittle materials is determined by the evolution inequality [7] that leads to the 
kinetic equation for the defect density parameter 
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where  is the kinetic coefficient. Kinetic equation (2) and the equation for the total deformation 

(C is the component of the elastic compliance tensor) represent the system of constitutive 
equations of quasi-brittle materials with considered types of the defects. 

Γ
σ pC +=ε ˆ ˆ

 
 
COLLECTIVE PROPERTIES OF DEFECT ENSEMBLE  
 
Equation (2) describes the characteristic stages of damage evolution. In the ranges of stress cσσ <  and the 
defect density the damage kinetics is subject to the “thermodynamic branch” corresponding to the 
local minimum of the free energy (Fig.1). At the approaching of stress to the critical value 

cpp <

cσ  ( ) 
the damage kinetics is subject to specific spatial-temporal structures, which appear in the defect ensemble 
in the course of the interaction between defects [10,11]. These structures describe the damage localization. 
The subjection of damage kinetics to these structures reflects the qualitative change of the system 
symmetry due to the reduction of the number of independent coordinates in the damage field. The spatial-
temporal structures are given by the self-similar solution of the kinetic equation (2) under the pass of the 
critical point  and reads  

cp→p
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where  are the parameters related to the nonlinear form of Eq.(2);  and t are the scaling 
parameters  which can be found under the solution of the corresponding nonlinear eigen-function problem 
[12]. The self-similar solution (3) describes the blow-up damage kinetics for t  on the set of the 
spatial scales  [10]. The loss of metastability of the free energy under 

0,0 0 >Φ>m
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Kkc ...,2,1, = cσσ →  

(Fig.2) leads to the qualitative change of the general property of the system including the symmetry 
properties. In the area cσσ >  the stress field doesn’t control the system behavior and the failure scenario 
is determined by the generation of the blow-up damage localization structures in the process zone.  
 
 
ORIGIN OF CRACK TIP INSTABILITY  
 
The kinetics of damage localization is determined by two parameters, which are given by the self-similar 
solution (3). These parameters are the spatial scales of the blow-up damage localization  and the so-
called "peak time"  which is the time of damage localization in the self-similar blow-up regime. The 
velocity limit V  of the transition from the steady-state to the irregular crack propagation is given by the 
ratio: 

CL

ct

C

ctCC LV ≈ . The steady-state crack propagation is realized in the case when the stress rise in the 

process zone provides the failure time 
C

C
cf V

Ltt =>  for the creation of the daughter crack only in the 



straight crack path. The failure time  follows from the kinetic equation (2) and represents the sum of the 
induction time t  (the time of the approaching of the defect distribution to the self-similar profile on the 

 scale) and the peak time : . For the velocity V

ft

t=
i

HL ct cif tt + CV<  the induction time  and the 
daughter crack appears only along the initial main crack orientation. For the crack velocity V

ci tt >>

CV≈  there is 
a transient regime ( t ) of the creation of number of the localization scales (daughter cracks) in the 
main crack path. The crack velocity growth in the area V  leads to the sharp decrease of the induction 
time that is accompanied by the extension of the process zone in both (tangent and 
longitudinal) directions where the multiple blow-up structures (daughter cracks) and, as the consequence, 
the main crack branching appears.  
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EXPERIMENTAL STUDY OF NONLINEAR CRACK DYNAMICS  
 
Experimental setup 
Direct experimental study of crack dynamics in the preloaded PMMA plane specimen was carried out with 
the usage of a high speed digital camera Remix REM 100-8 (time lag between pictures 10 ) coupled 
with photo-elasticity method [13]. The experiment revealed that the pass of the critical velocity V  is 
accompanied by the appearance of a stress wave pattern produced by the daughter crack growth in the 
process zone. Independent estimation of critical velocity from the direct measurement of crack tip 
coordinates and from pronounced stress wave Doppler pattern gives a correspondence with the Fineberg 
data (V ) [2]. 

C

 
Characteristic crack velocity 
The dependence of crack velocity on the initial stress is represented in Fig.2. Three portions with different 
slopes can be shown. The existence of these portions determines three characteristic velocities: the velocity 
of the transition from the steady-state to the non-monotonic straight regime V , the transient 
velocity to the branching regime V  and the velocity V

mS 220≈
ss/ m /600  when the branches behave 

autonomous. The characteristic velocity V sm /330  allowed us to estimate the peak time  to measure 

the size of the mirror zone : LC 0 VC
1≈LCt . 

 

 
Figure 2. Figure 3. 
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In our experiments the dependence of the density of the mirror zones  on the stress also were studied 
(Fig.3). Actually, since the failure time for V  is approximately constant ( t

N
CV> tcf ≈≈ ), there is a 

unique way to increase the crack velocity to extend the size of the process zone. The crack velocity V  is 



linked with the size of the process zone  by the ratio HPZ LL ~
c

PZ
t

L=V . Since the branch length is 

limited by the size of the process zone, we obtain the linear dependence of branch length on the crack 
velocity. This fact explains the sharp dependence (quadratic law) of the energy dissipation on the crack 
velocity established in [5]. 
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Scaling properties of failure  
The scaling properties of failure were studied also under the recording of the stress dynamics using the 
polarization scheme coupled with the laser system. The stress temporal history was measured in the marked 
point deviated from the main crack path on the fixed (4 mm) distance. This allowed us to investigate the 
correlation property of the system using the stress phase portrait ~  (Poincare cross section) for slow 
and fast cracks, Fig.4.  
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Figure 4: Poincare cross-section 
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Figure 5: Correlation integral 

 
Figure 6: The stress history  

 
These portraits display the periodic stress dynamics (Fig.4) that in the correspondence with the local 
ellipticity of Eq.(2) for cσσ <  (V ) and the stochastic dynamics for V  corresponding to the 
second type of the attractor (Fig.4). The recording of the temporal stress history in the marked point for 

 revealed the appearance of finite amplitude stress fluctuations which reflect the qualitative new 
changes in the process zone for the fast crack (Fig.5). The scaling properties were studied in the term of the 
correlation integral calculated from the stress phase pattern in the 

CV< CV>

CVV >

σ& ~σ space. The existence of the scales 
with the stable correlation index was established for the regimes V CV<  and V . The values of 
the correlation indexes in these regimes show the existence of two scaling regimes with the deterministic 
( 8

CVV >B >

.0,/ ≈200= νsmV , Fig.6) and stochastic ( 4.0,/613,426 ≈= νsmV ) dynamics. The extension of the 
portions with a constant indexes determines the scale of the process zone . The length of the process 
zone increases with the growth of the crack velocity in the range V  with the maintain of the 
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L
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scaling property of the dynamic system. Numerical simulation of the damage kinetics in the process zone 
allowed us to conclude that this scaling is the consequence of the subjection of the failure kinetics to the 
blow-up self-similar solution which determines the collective behavior of the defect ensemble in the 
process zone [14].  
 
 
LOW VELOCITY LIMIT. CRACK ARREST. 
 
In this part we have addressed the question of how a dynamic crack will approach zero velocity. This fact 
was discussed in [6] and it was shown considering a simplified version of the strip specimen with the 
radiation at the boundaries that steady-state velocity law with a square-rot behavior is expected as a 
function of the excess load over the Griffith load. This means that the steady-state velocity increases with 
an infinite slope near zero overload, but in a smooth fashion with a load. It was shown also that if the crack 
has no field inertia, the pass of the "trapping limit" will lead to the crack move. But if the crack has a field 
inertia the crack velocity will exhibit a transient oscillation. The similar conclusion can be made to 
compare the estimation of the crack velocity, given in [6] ))(()2( wCEw e γ−=V , where  is the 
Barenblatt cohesive zone of the crack, 

w
)2( γ−eE is the Griffith static terms, C is material parameter, and 

the results predicted above statistical model. Taking in view that  is similar , the root term is 
the inverse characteristic time t  given by the self-similar solution. This fact allowed us to determine the 
range of the application of this generalized Griffith relation, where the crack can approach to the rest 
smoothly: V . For V , when the "wave part" of energy will increase with crack velocity, the crack 
arrest will appear non-smoothly for the energy metastability providing the "crack trapping". The similar 
view can be developed to analyze the crack overload above the Griffith value before any state motion.  
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