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ABSTRACT

The definition d an energy releese rate in elastic-plastic fradure medanics, denoted by G,,, is propased, and
can be related to the parameter G* proposed by Kfouri & Miller in 1976.New results obtained with this
parameter and rew considerations related to the well known «Paradox d Rice » are presented. In particular
we find that this parameter is not zero if we @nsider the cae of an elastoplastic material with a linea
isotropic hardening. But it is necessary to consider a very fine mesh and very small cradk propagations.
Some applications are briefly presented in two cases where the J-approach is not valid.
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INTRODUCTION

The J-approach is very limited and canna be gplied as on as the loading kecome non popational. It is
necessry to develop aher approadhes as the two parameters approac or the locd approad. Our choiceisto
reconsider the energetic gpproach where many parameters cdled «path independent integrals » have been
proposed, withou any consensus. We recdl the definition o an energy rate in an elastoplastic media and we
show that in the cae of a stationary crad in an elastoplastic material with linea isotropic hardening, this
parameter is not zero, in contradiction with the Paradox d Rice Then it is possble to use it as a fradure
parameter, and we will present two appli caions where the J- approach is not valid : 1/ the first one mncerns
the problem of unloading, 2/ the second one concerns the problem of the shallow crack effect.

DEFINITION OF AN ENERGY RELEASE RATE IN AN ELASTOPLASTIC MEDIUM

Brittle fracturein an elastic medium

The Griffith's criterion is widely used to predict whether a aadk propagates or nat in an elastic medium,
considering ony progressve and continuous cradk propagation. But this approadh canna be used to predict
cradk initiation in a noncradked medium, or the discontinuows propagation d a aad. This is the reason
why Francfort and Marigo [1] have propacsed a new theory where these two phenomena can be predicted. In
this theory, we @nsider a discretisation d the load history where the true evolution d the structure during a



load increment is taken into ac@urt only throughthe state of the structure (displacement field U and cradks
positionsS) at the beginning and at the end of the load increment. Let’s call E the energy defined by

E (U, 49 = E,(U) + G, area@S)

where E is the strain energy, G, the toughressand ASthe newly creaed surfaceduring the load increment,
andFrancfort andMarigo postulate thdt andASrealise the minimum of E.

At this stage two remarks can be made

e incase of progressve aadk propagation, Griffith criterion can be retrieved by restricting AS (4l in 2D) to
asufficiently small propagation dS (dl in 2D) and, if W, is the potential energy o the structure, we can

define an energy release ratg &:

We(ds) _We(D)
Gq(ds) = Airdas)  © &
¢ the minimisation principle can be linked to incremental formulations with gobal internal variables as
soon as the first term (elastic energy) aongwith the kinematic admissbility condtions are identified as
the free Helmhotz' energy F and the second term (the energy dsdpated when the adadk propagates) is
identified as the dissipation potential D, see [2].

Brittle fracturein an elastoplastic medium

Exploiting this link, we extend Francfort and Marigo theory in the cae of an eastoplastic material by

introdwing the energetic contribution die to plasticity into the free Helmhotz' energy and the disgpation

paotential, assuming that fradure mecdhanisms and dasticity are independent, see[3]. The energy avail able for

propagation is called W, and an energy @iean be defined for a sufficiently small propagatiShas:
w(ds) - w(0)

G0 = -y < ©

c

The (3A parameter proposed by Kfouri-Miller

The G, parameter represents the energy avail able in the structure to oltain a dS propagation, dvided by dS
In 1966,Rice ®nsidered a mntinuowly growing cradk in an elastoplastic materia where the flow strength
saturates to a finite value & large strain, and demonstrated that this value must be zeo, see[4]. Thisis the
« Paradox d Rice». This result canna be gplied to a stationary cradk or to a non bouned flow strength
material, bu in 1976,Kfouri and Mill er, see[5], considered this case and they founda result in agreement
with the Paradox d Rice They proposed a parameter cdled G* defined as AW/Aa, AW being the work
relessed duing a small amount Aa of the aadk, and found: Gt equal 0 when Aa goesto zero. Althoughthe
G, definition is more general, it can be proved that in the cae of a 2D elastoplastic media and for a

sufficiently small propagation Aa, G, is equal to G In 1977,Rice used this result to generalise his paradox,
see[6], and nov it seans that it is a general and well accepted result. Nevertheless if we reconsider it 25
years after, the numerical aspects ofrttalelisation used bifouri and Miller seem to be insufficient.

ANALYSISOF THE G, DEPENDANCE WITH RESPECT TO Al

Definition of the problem

Let us consider a Centered Cradked Plate submitted to an increasing loading in mode I. The data related to
geometry and materia are presented onFig. 1, and the mesh and a 2om of the mesh onthe aadk tip area
are presented onFig. 2 and 3. Due to symmetries only a quarter of the structure is represented, and the plane
strain hypdhesis is asaumed. Different values of the size « Al » of the dement locaed at the aad tip and
corresponding to different meshes are investigated as follows



e M1 : mesh forAl = 0.0500 mm, M2 : mesh forAl = 0.0125 mm,

e M3 : mesh forAl = 0.0062 mm, M4 : mesh forAl = 0.0025 mm,

e M5 : mesh forAl = 0.0012 mm
We consider 2 values (one low value, one high value) for the maximum loading :

e U _.=0.016 mmandU_, =0.100 mm
For eat loading and for eath mesh we make the computation in 10 steps. After that and for ead step, ore
element is released to obtain the propagation of the crack.

E =200000 M Pa v =0,3
o’ =480 M Pa h=5000 MPa
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FIG. 1 - Geometry, material FIG. 2 - Zoom of the mesh in the crack tip area

FIG. 3- Zoom of the mesh near the crack tip

Results obtained

On Fig. 4 the variation d G, asafunction d the loadingis presented for the 4 meshes M2, M3, M4 and M5
and for the goplied loading correspondng to the largest maximum value : Ud = 0.100mm. We can seethat
the G, value steadily increases whil e the loading is increasing, and that the values obtained for the 4 meshes
seam to converge to anonzeo vaue. In fad the arve obtained with the mesh M5 is very close to the arve
extrapolated with all the results in order to obtain the result correspondihgdaal O.

On Fig. 5 the variation d G, asafunction d the loadingis presented for the 4 meshes M2, M3, M4 and M5
and for the goplied loading correspondng to the small est maximum value : Ud = 0.016mm. We can seethat
the G, value steaily increases whil e the loading is increasing, bu that the values obtained for the 4 meshes
are mesh dependent (rdependent) and seem to converge to a zero value.
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FIG. 4 - Resultsfor different meshes: U = 0.100 mm FIG. 5 - Results for different meshes: U = 0.016 mm

Explanation : avery important parameter has to be defined in order to understand these results : Np = Rp/Al
(Rp being the radius of the plastic zone). Obviously, the value of this parameter must be sufficiently high,
and because the radius Rp is increasing from zero with the loading, it will be impossble to oltain a predse
result on G, if the loading is very low. That means that the value of Al (even very low but fixed), will always
be too high compared to the loading a to the radius Rp. We can verify this point on Fig. 6 (zoom of Fig. 5
for very low loading) where the different curves « Numericd G, » are distributed, with resped to Al,
between the low curve « Theoreticd G, » (low, but not zero) and the high curve « G-élastic (or J) ». These
curves are locaed in a very large aea ad we can conclude that the result obtained for a very low loading
canna be predse. We will always have an apparent dependence of the result with resped to Al. Of course if
the loading is higher, this phenomenon dsappeas and a predse result can be obtained. But for that it is
necessary to consider a very fine mesh with very low valusk of
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TWO APPLICATIONSWHERE THE J-APPROACH ISNOT VALID

The case of a structure submitted to loading and unloading

Let us consider again the cae of the Centred Cradced Plate. Now it is submitted to a loading that is first
increasing and then deaeasing to zero. As onas the loading deaesases, it becomes non popational, and
the J-approach canna be gplied. On Fig. 7 the variation d G, as afunction d the loading, is presented for
the gplied loading correspondng to dfferent maximum values of the loading. We can seethat the G, value
steadily increases while the loading is increasing, and afterwards this value fals down suddenly to zero
while the loading is deaeasing. Then the G, value stabilises at this zero value crrespondng to the
« closure» of the crack tip, when unilateral conditions are taken into account.
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FIG. 7 - Increasing and decreasing of Gp as function of the loading

The variation d the G, parameter during urloading is very interesting and it is possble to take advantage of

thet. Indeed, G, = 0 means that there is no energy avail able in the structure to make the aad propagate. So
the conclusion is that in such a case the initiation of the crack is impossible.

The case of the shallow crack effect

The toughressof a materia is determined from a test on a CT spedmen with a large aad. If we cary out
ancther test on the same material but on a different spedmen with a small cradk, we find that the toughress
is much higher. This is cdled «the shalow crad effed », and we would like to apply the G, parameter to
the interpretation of this effect. For that, let us consider two SENB specimens with different crack lengtt

Definition of the problem: 1/ Geometries of the SENB : Width : W = 50mm, Height : H = 420mm, Length
of the aack A : A/W =0.5for the large aadk, A/W = 0.05for the small cradk. 2/ Material of the SENB : the
spedmens are made in an A508forging sted, Youngmoduus: E = 173528MPa, Poison'sratio: v = 0.3,
Yield limit : oy =617.8MPa, Hardeningmoduus : H = 1922.6MPa. The toughresscorresponds to a aiticd
value of J, Jc =42.kN/m in the cae of A/W = 0.5and to Jc =88.kN/m in the cae of A/W = 0.05.Plane
strain hypdhesis is assumed, and, dwe to symmetries, only one half of the structure is represented. The
different meshes are equivalent to those presented for the CCP specimen.

Results obtained : On Fig. 8 the variation d Jas afunction d G, is presented for the two spedmens. We can
seethat the two curves are very close. So, we can conclude that the G, parameter seemsto be equivalent to J,
that isto say it isnat able to predict the shall ow cradk effed. But, as we observe asudden cradk propagation
(cleavage fradure), we ae now looking at the G* value, for finite values of Al. On Fig. 9 the variation o Jas
afunction o G is presented for the two spedmens, only in the cae Al = 0.200mm, representative of the
effed obtained for large values of Al. We can seethat the aurve crrespondngto A/W = 0.05is higher than
the aurve @rrespondng to A/W = 0.5. The value : Jc(A/W=0.5) = 42.kN/m, corresponds to the value G* =
10.5kN/m, and to the value Jc(A/W=0.05 = 75. kN/m (to be compared to 88.kN/m). Therefore we can
conclude that the tSparameter seems to be able to predict the shallow crack effect.
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FIG. 8 - J asfunction of the Gp parameter FIG.9- J asfunction of G* (Al =0.2 mm)

CONCLUSION

An energy releese rate G, has been defined for an elastoplastic material, starting from the dastic fradure
theory of Francfort and Marigo. This parameter can be related to the parameter proposed by Kfouri and

Mi
ha

ller in 1976. Considering a stationary cradk in an elastoplastic material with linea and isotropic
rdening, we have obtained the following new results

the G, values are increasing with the loading and if we cnsider the results obtained for high values of the
applied loading, th&, values tend clearly to a finite value whilrgoes to zero,

if we consider the results obtained for very low values of the gplied loading, these results are necessary
mesh dependent, at dependent, and it seems that these values tend to zera\Wiees to zero,

this apparent dependence muld be explained if we cnsider the parameter Rp/ Al correspondng to the
mesh refinement in the plastic zone area, which must be sufficiently high,

the G, parameter can be used to analyse the cae of a structure submitted to a loading that is first
increasing and then decreasing particular wherG, = 0, the initiation of the crack is impossible,

an analysis of the shallow crack effed reveds that the G, parameter is equivalent to J, and canna explain
this effed, but the G* parameter correspondngto large aadk propagation (Al > 0.2mm) gives aresult in
agreement with the experimental one.
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