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ABSTRACT 
 
A method is presented for assessment of effects of main plastic factors – reversed plastic yielding of the 
material and plasticity-induced crack closure – on small fatigue crack behavior. The method uses the closed 
form analytical solution of the elastic-plastic problem for a rectilinear crack in a plate on the basis of plastic-
strip model. This allowed to simplify significantly the calculation of the stress-strain parameters at the crack 
tip (the effective stress intensity factor range and crack tip opening displacement range). It was shown that 
the calculated results agree well with those obtained by the more complicated methods, including a method 
of finite elements. Using the proposed method, the dependence of the small crack growth rate on the loading 
amplitude and stress ratio, initial crack size and other parameters, has been analyzed. The revealed 
regularities and tendencies are proved experimentally. In particular, the method is successfully utilized to 
predict the small fatigue crack growth rate in Fe-3% Si alloy under high amplitude loading. 
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INTRODUCTION 
 
Small fatigue crack behavior greatly depends on the plasticity effects. At the relatively high stress level that 
are usually required to grow small cracks, the criterion of small scale plasticity at the crack tip, relative to the 
overall size of the crack, is violated. Therefore, conventional methods of linear-elastic fracture mechanics 
can not be used and the crack growth rate dl/dN should be evaluated from deformation or energetic 
parameters, e.g. crack tip opening displacement range ∆δ: 
 

)(vdNdl δ∆=       (1) 
 
The value of ∆δ is significantly dependent on the plastic-induced crack closure, that is differently manifested 
for small and long cracks. To consider these factors, it is necessary to analyze the elastic-plastic situation at 
the crack tip under cyclic loading. Approximate analysis can be done by known plastic-strip model (Dugdale 
[1], Panasyuk [2]). This approach was advanced by Budiansky and Hutchinson [3], Newman [4-5], Wang 
and Blom [6-7] and others authors. A rather simple method of an analytical solution on the basis of strip-
model of elastic-plastic problems about fatigue crack growth by its reduction to a singular integral equation, 



has been proposed earlier by Panasyuk et al [8-9]. This method allows us to decrease the complexity and 
instability of calculations, typical of numerical methods. The mentioned method is used in this paper to 
assessment of the stress-strain state near small fatigue crack and prediction of crack growth rate from 
equation (1). 
 
 
DEVELOPMENT OF THE MODEL 
 
We consider an internal rectilinear crack of length 2l in a plate subjected to cyclic loading (p=pmin ~ pmax), as 
shown in Figure 1. According to plastic-strip model, plastic zones at the crack tip are replaced by the 
additional cuts where the boundary normal stresses are equal to flow stress. At p=pmax these stresses are 
taken as equal to ασ0, where σ0 is average between yield stress and ultimate tensile strength of material, α is 
plastic constraint factor, the accounts for the influence of stress state on tensile yielding at the crack front in 
accordance with Newman [4]. For plane stress conditions α=1, and for simulated plane strain conditions 
α=3. At p=pmin  the stresses within the cyclic plastic zone are equal to -σ0. In the analysis the crack closure, 
caused by plastic stretches of thickness  on the fatigue crack surfaces, is accounted for. These plastic 
stretches are the result of the residual plastic deformation formed in the near-surface layers as the crack 
grows through plastic zone ahead of the crack tip. During unloading, the crack surfaces contact each other 
along the entire crack length or in specific sections (l

h x( )

c <x <l ) near the crack tip. Contact stresses are 
denoted as σcon(x).  
 

 
 

Figure 1: A rectilinear fatigue crack in plate: 1- crack; 2-plastic stretch; 3-plastic zone 
 
Analytical solutions to the corresponding boundary-value problem for a plate with model cuts (crack + 
plastic zones) have been obtained on the basis of results in [2] (details are given in Panasyuk et al [10]). 
Specifically, normal displacements of the crack edges at the maximum and minimum loads are found to be: 
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respectively; E is the elastic modulus of the material. 



 
Together with the condition of crack edge closing in the contact region  
 

lxl)x(h)x(u cmin ≤≤=      (4) 
 
dependence (3) forms equation to estimate the unknown contact stresses σcon(x). By differentiation with 
respect to x, this equation is reduced to singular integral equation: 
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Solution of equation (5), according to Muskhelishvili [11], gives the following formula for )x(conσ : 
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The tensile plastic zone length lp and cyclic plastic zone length lpf  are determined from the conditions that 
the stress at the point just ahead of the plastic zone is elastic and infinitely approaches the yield stress. 
Parameter lc is determined from the condition that the contact stress approaches zero at the end of contact 
zone. 
 
The developed solution is used for assessment of the parameters of elastic-plastic situation at the fatigue 
crack tip. Main parameters are as follows: maximum  and minimum crack tip opening displacement 
δmax=2umax(l); δmin=2umin(l); and the crack opening stress pop, which is defined at the external load p=pop at 
which crack surfaces are fully open and process of active deformation of the material immediately ahead of 
the crack tip begins. The mentioned parameters determine the effective stress intensity factor range 

l)pp(K opmaxeff π∆ −=  and cyclic crack tip opening displacement range ∆δ=δmax - δmin, which are the 
basic values for calculating fatigue crack growth rate from linear and nonlinear criteria of fracture 
mechanics. 
 
 
NUMERICAL RESULTS AND DISCUSSION 
 
The proposed model is applied to a fatigue crack emanating from a rectilinear defect of length 2l0. The 
defect thickness is assumed to be sufficient to prevent contact of the opposite crack faces even under 
symmetrical tension-compression loading. Thus, at the initial moment there is no closure effect. Further 
growth of a fatigue crack is accompanied by the fracture of plastically deformed material ahead of the crack 
tip and formation of plastic stretches on its surfaces. Their thickness are unknown but are evaluated by step-
by-step analysis of crack extension. Specifically, at each step, the size of a stretch formed on the fresh crack 
surface is assumed to be equal to the value of crack edge displacement umin(x) immediately ahead of the 
crack tip. This value is calculated by the mentioned above model. 
 



Some of the predicted results for plane stresses (α=1) at two stress ratio R=0 and R=-1 and several operating 
stress  pmax/σ0  are presented in Figures 2-4. 
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Figure 2: Predicted variation of normalized crack closure loads pop/pmax with a crack length: 
(a) R=0; (b) R=-1; 1- pmax/σ0=0.2; 2- pmax/σ0=0.4; 3- pmax/σ0=0.6; 4- pmax/σ0=0.8 

 
With the crack length extension, the thickness of plastic stretch on the crack surfaces increased and this 
induced a higher crack closure level (see Figure 2). After some increment of a crack length the process 
stabilizes itself and crack closure ratio pop/pmax approaches constant «steady-state» values, which pertain to 
those for long cracks. These steady-state values are shown in Figure 3 as functions of the maximum stresses 
pmax/σ0. These results indicate that level of plasticity-induced crack closure becomes lower with increase of 
the operating loads magnitude, especially at negative load ratios. 
 
 

0 0.4 0.8 

0.2 

0.4 

0.6 
R=0 R=-1

a) b)

p
max σ0

p op
p m

ax

Ibrahim, Thompson 
and Topper (1986)

McClung, Sehitoglu 
          (1989) 

Newman
 (1984)

present model

Ibrahim, Thompson 
and Topper (1986)

McClung, Sehitoglu 
          (1989) 

Newman
 (1984)

present model

0 
0 0.4 0.8 

p
max σ0

0.2 

0.4 

0.6 

p op
p m

ax

0 

 
 

Figure 3: Predicted values of the closure ratio pop/pmax  
as a function of the cyclic loading level  pmax/σ0  for a steadily growing crack  
and comparison of the present results with other models: (a) R=0 ; (b) R=-1 

 
In Figure 3 the presented results are compared with several other previous models. The curves 
pop/pmax~pmax/σ0 for a steadily growing crack, which were obtained earlier using the method of finite element 
(McClung. and Sehitoglu [12]) or generalized plastic strip model (Newman [13], Ibrahim, Thompson and 
Topper [14]), are also presented. These results agree well for both stress ratio and various loading 
amplitudes. 
 
The predicted values of normalized cyclic crack tip opening displacement range ∆δ are shown as a function 



of the maximum stress intensity factor Kmax in Figure 4. Based on presented data, the following conclusions 
as to behavior of small fatigue crack can be draw. 
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Figure 4: Dependence of normalized crack tip displacement range on  
maximum stress intensity factor in a cycle 

 
Firstly, the level of plasticity-induced crack closure is lower for small cracks, compared to the steady-state 
values pertaining to long cracks. Similarly, at the commencement of crack growth, cyclic crack tip opening 
displacement for the small crack exceed the corresponding steady-state (long crack) values. As a result the 
growth rate for the small crack would be expected to be higher. 
 
Secondly, as a crack grows, a gradual increase in the magnitude of plastic deformation near crack tip takes 
place; this promotes the crack growth. At the same time, a gradual increase in the level of plasticity-induced 
crack closure occurs; this retards the crack growth. The interaction of this two factors caused the non-
monotone variation of «crack driving force»: a value of ∆δ at first decreases and then increases with the 
crack growth (see Figure 4). This could causes both retardation and sometimes complete arrest of small 
cracks, what has been observed frequently by experiment. 
 
Finally, the presented data indicate that for small cracks the actual value of ∆δ is determined not only by 
current magnitude of the external cyclic loading, as is the case for long crack growth, but is significantly 
dependent on the crack length. We thus conclude that small crack growth rates cannot be predicted without 
considering the history of their initiation. 
 
 
EXPERIMENTAL VERIFICATION OF THE MODEL 
 
The proposed model has been used for calculating small fatigue crack growth rate in Fe-3% Si alloy and to 
compare predicted results with the earlier known experimental data [15]. Nisitani, Kawagoishi and Goto [15] 
tested cylindrical specimens of diameter 5mm in rotating bending. Maximum bending stresses on the 
specimen surface were 0.54 ~ 0.86 of the yield strength. The surface cracks initiated from a small blind hole 
(diameter and depth are 0.3 mm). Figure 5(a) shows relation between the crack growth rate and the stress 
intensity factor range. Only at low values of loading amplitude (σa = 560 ÷ 640 MPa) these relations are 
described by a unique dependence. At high stress levels, the K∆ -based criterion is unsuitable for evaluating 
the crack growth rate. 
 
On the basis of the presented model calculation of cyclic crack tip opening displacement range ∆δ was 
carried at the following values of the parameters: pmax=σa, R=-1; σ0 =1300 МPа; α =1.8. The initial defect 



size was taken equal to the hole diameter 2l0 = 0.3 mm. The reason of that was the fact that experimental 
data correspond to the crack lengths that at least two-fold exceed the hole sizes (2l ≥ 0.6 mm). Under such 
conditions, the elastic-plastic situation at the crack tip slightly depends on the initial defect geometry. 
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Figure 5: Crack growth rate in Fe-3% Si alloy: (a) depending on ∆K [12], (b) depending on ∆δ 
 
In Figure 5(b) the dependence of the crack growth rate on ∆δ is illustrated. All experimental data are 
described by a unique dependence. Thus, in this case crack growth can be predicted by the proposed model 
and deformation fatigue criterion in form equation (1). 
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