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ABSTRACT

 

This paper discusses the modelling of residual stresses in fracture problems. Historically, residual stress
effects in fracture have focused on the crack driving force, so that solely opening mode residual stresses are
assumed to influence fracture. However, residual stresses can effect all components of stress at the crack-tip,
and can thereby alter crack-tip constraint and influence material toughness. This paper discusses a modelling
approach capable of revealing the effects of residual stress on both driving force and constraint. The
modelling employs non-linear finite element analyses in which residual stresses are treated using eigenstrain.
Eigenstrain is imposed to induce residual stress as an initial condition in a cracked geometry. Under
subsequent applied loading, the stress fields due to applied and residual loadings are free to interact, with
residual stress being potentially reduced by gross plasticity. In order to predict fracture independent from the
level of crack driving force, the evolution of the crack-tip stress and strain with applied loading is monitored
using any of various micromechanical fracture prediction schemes, which depend directly on the crack-tip
conditions. Domain integral solutions for 

 

J

 

, derived from the FEM results and properly corrected for the
presence of initial eigenstrain, are computed. Constraint is quantified using 

 

J-Q

 

 theory. Together, 

 

J

 

 and 

 

Q

 

allow comparison between the modelling approach pursued and more traditional global parameter
approaches.
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INTRODUCTION

 

Recent research in micromechanical modeling has made progress toward the accurate prediction of fracture
under various crack-tip constraint conditions. Historically, fracture prediction has focused on determining a
global fracture parameter (e.g., the 

 

J

 

-integral, 

 

J

 

, or the Mode-I stress intensity factor, 

 

K

 

I

 

) as a function of
applied load, and finding the load at which the parameter exceeds a critical level for fracture. This approach
rests on the assumption that the fracture parameter alone controls the crack-tip stress and strain.
Unfortunately, in application, material non-linearity (i.e., yielding) at the crack-tip invalidates this
assumption. Yielding is a function of the triaxial state of stress, and the crack-tip stress state has a range of
variation in real structures. In fact, it is well known that differences in crack-tip triaxiality (or, more
commonly “constraint”) can exist in structures due to differences in geometry and applied loading (e.g., thick
versus thin, or tension versus bending). Further, different crack-tip stresses lead to fracture at different levels



 
of the global fracture parameter. An alternative method to parameter-based approaches, micromechanical
methods directly examine the crack-tip stress and strain state to provide an estimate of fracture propensity.
Implementation of the micromechanical approach therefore requires the prediction of crack-tip stress and
strain, and its history with applied loading. In practice, finite element methods (FEM) are used to compute
the crack-tip conditions, as a function of applied loading.

Application of the micromechanical approach to predict fracture in residual stress bearing structures provides
some surprising results. The traditional approach to predict fracture of residual stress (RS) bearing, flawed
components involves linear superposition. This approach assumes that only opening mode RS will impact the
fracture process, when, in fact, residual stresses are often triaxial. Triaxial RS will influence non-linear
material behavior at the crack-tip, a process not accounted for by superposition. Including RS in a
micromechanical approach, however, does allow the residual stress field to affect the behavior of material at
the crack-tip. Accordingly, the micromechanical approach offers a more complete accounting of RS effects in
fracture, and gives insight to the fracture process when RS is present. An example application of this
approach is briefly described, which illustrates the alteration of driving force and constraint due to residual
stress, and their effect on fracture prediction.

 

FRAMEWORK

 

This section describes a computational and analytical framework for predicting fracture in flawed, RS
bearing structures using micromechanics. We first lay out the general finite element procedures employed.
Next, we describe methods for introducing RS into the computation. The computational results provide the
crack-tip stress and strain history as a function of applied load, which serve as input to a micromechanical
fracture prediction model. The RKR model for brittle fracture is described, and later used to illustrate the
approach. Finally, 

 

J-Q

 

 analysis is described, which helps to interpret the stress and strain history at the crack-
tip, and to compare the results of micromechanics to those that would be obtained using a traditional global
parameter approach.

 

General analysis techniques

 

Elastic-plastic finite element computation is used to simulate the response of a structure of interest to both
applied and residual stresses simultaneously. The finite element solutions employ a non-linear, finite strain
formulation. Plasticity is assumed to follow isotropic, incremental 

 

J

 

2

 

 flow theory with a piece-wise linear
Cauchy-stress logarithmic-strain curve obtained from tensile testing. Commercial codes can be used to
perform these analyses. Mesh refinement in the crack-tip region is critical, and must assure that stress and
strain are accurately captured in the near crack-tip region. Time-stepping in the analysis provides a means to
capture the developing crack-tip state with increasing applied load, which serves as input to the fracture
prediction scheme.

 

Inclusion of residual stress

 

Residual stress is included in the finite element computation using eigenstrain, 

 

ε

 

*. Eigenstrain is a
combination of all the non-elastic, incompatible strains set up during processing of a material [1]. In welding,
the eigenstrain is a combination of thermal, plastic, and transformation strains; in coining or autofrettage, the
eigenstrain is due to plasticity. The eigenstrain field is defined with reference to 

 

elastic

 

 deformation of the
structure, and reproduces the entire RS state when the material behavior is 

 

elastic

 

; therefore, eigenstrain is

 

not

 

 merely a sum of the various non-linear strains. For a particular process, the eigenstrain field is a tensor
with spatial dependence, and can be found experimentally [2] or by modeling [3]. If a process model is used
to determine the residual stress field in a given body, 

 

σ

 

RS

 

, or if residual stress is measured at enough points to
provide a spatial distribution of the residual stress field, the eigenstrain field can be found from the residual
stress field using

(1)

where 

 

C

 

 is the usual elastic tensor giving stress from elastic strain.

εij
* C– ijkl

1– σkl
RS

=



 
The use of an eigenstrain distribution in modeling offers several advantages for further analysis. First, the
residual stress present can be determined by imposing the eigenstrain distribution in a linear elastic finite
element model of the geometry. (Note that residual stresses, by their nature, do not result in active yielding,
and a valid eigenstrain field must impose stresses that satisfy the yield criterion). Although an eigenstrain
analysis is complicated by the spatial variation of each component of the eigenstrain tensor, a general-
purpose finite element program can be used to produce the RS field. Further, when the eigenstrain field is
known, the entire, full-field, triaxial RS state is known at every point within the structure.

When the eigenstrain field is known for the unflawed structure, the analysis of a flawed structure can be
performed. The addition of a crack introduces new surfaces, and the RS state in the flawed body depends on
these surfaces. If the structure is linear elastic, the state is found simply by modeling the traction-free
surfaces. In non-linear materials, crack-tip yielding must be allowed when introducing the flaw. To handle
this situation, the eigenstrain distribution is first imposed in the body with crack-face nodes restrained, and
the equilibrium RS state found (this step is elastic). Then, the crack-face nodes are released in succession, so
that the crack gradually extends from the free surface to simulate fatigue (this step can be elastic-plastic). The
rate at which the crack is extended will have a bearing on the crack-tip fields, and one must ensure that the
opening is gradual enough (e.g., so subsequent fracture analysis is not affected). When properly executed,
this process redistributes the original RS field, allowing for crack-tip yielding, and resulting in a flawed RS
bearing structure.

Once RS is introduced into the computation, applied loading is simulated. During this subsequent loading
phase, the residual and applied stresses act together at the material level. Any new plastic deformation is the
result of both stress types. Therefore, this analysis technique allows for the non-linear interaction of RS and
applied loading, which is not accounted for when applying global approaches.

An alternative to using eigenstrain is direct simulation the process causing the residual stress field. Results of
the simulation can then be used as an initial condition for the simulation of crack introduction and applied
loading. However, direct simulation can only be readily pursued for simple problems, with small amounts of
plasticity or other incompatible strain.

 

Micromechanical fracture prediction

 

Since the analysis technique just described provides a complete description of the material state in the
presence of residual and applied loading, the crack-tip material history can be used within a micromechanical
scheme to predict fracture. The physical phenomena occurring in the fracture process vary, and it is generally
useful to consider brittle and ductile fracture processes separately [4]. Here we briefly describe one model for
predicting brittle fracture, and this is used later to illustrate the general computational approach. In principle,
other micromechanical models could be employed.

Initiation of cleavage fracture in mild steels can be predicted using the RKR micromechanical model [5].
This simple model predicts fracture when the opening stress, 

 

σ

 

yy

 

, ahead of the crack-tip exceeds a fracture
stress, 

 

σ

 

f

 

*, over a microstructurally relevant distance, 

 

l

 

*. In applying this model, one monitors the progress of
the opening stress ahead of the crack-tip due to residual and applied loading. Once the RKR criterion is
satisfied, fracture is predicted. The parameters in the RKR model are typically found through laboratory
testing for a given material and reported ranges for steels are 2 to 5 grain diameters for 

 

l

 

*, and 2 to 4 times the
yield strength for 

 

σ

 

f

 

* [5]. When the micromechanics condition for fracture initiation is satisfied, the
associated applied load and global fracture parameters (e.g., 

 

J

 

-integral) can be found from the FEM results.

 

Characterization of crack-tip behavior

 

When the above procedures are used to predict fracture, none of the traditional global fracture parameters are
used. Nevertheless, it is useful to compare the micromechanical predictions with those that might be made
using a traditional approach. To perform this comparison, we utilize two parameters, one related to driving
force and one to constraint. Specifically, we invoke 

 

J-Q

 

 theory, which was developed from simulation of
crack-tip fields in finite and infinite size bodies [6,7].



 
During the non-linear analysis, the 

 
J

 
-integral is estimated at each increment of applied loading using the

domain integral technique. As such, the computed value of 

 

J

 

 includes the contribution of residual stress
within the material. Calculation of 

 

J

 

 in the presence of RS and eigenstrain requires special attention. Recent
work [8,9,10] has found that domain-independent values of 

 

J

 

 can be obtained if two corrections are made to
the usual domain integral formulation for 

 

J

 

. The first of these involves the spatial derivative of the residual
stress or eigenstrain field with respect to the crack driving direction (assumed to be 

 

x

 

1

 

 here, for simplicity)
[8]. The second involves a modification of the work density of the material, 

 

W

 

, to account for plastic
dissipation present at a crack-free initial state, which follows residual stress introduction,  [9]. The
first correction term is required to obtain domain independence in any modelling approach that involves
residual stress or eigenstrain. The second term is needed, for example, when the residual stress state is found
through process modeling which causes plastic straining and dissipation unrelated to subsequent fracture
loading. The domain integral including these two additional terms can be written as [10]

(2)

where the first integral is the usual domain integral formulation for 

 

J,

 

 and the second and third integrals are
the first and second correction terms described above; these three terms, including the leading factor 1/

 

A

 

q

 

,
will be referred to as 

 

J

 

1

 

, 

 

J

 

2

 

, and 

 

J

 

3

 

. The quantities in the integrals not yet defined are the stress tensor, 

 

σ

 

ij

 

, the
displacement vector, 

 

u

 

j

 

, the spatial coordinates, 

 

x

 

i

 

, a scalar weight function representing a virtual
displacement, 

 

q

 

, the material work density, 

 

W

 

, and the crack-front area of the virtual displacement, 

 

A

 

q

 

 (see,
e.g., [11]).

In a number of cases, the values of 

 

J

 

 computed from the usual formulation (i.e., 

 

J

 

1

 

 alone) are highly
inaccurate. Consider, for example, the cold-expanded hole with a radial crack shown in Figure 1(a) which
was recently studied in [12]. In that study, the uncracked hole was expanded radially by 4%, then allowed to
relax to form a compressive residual stress field at the hole periphery. The radial cracks shown in the figure
were then introduced, and far-field loading applied. Because the residual stress varied strongly near the hole,
and because the plasticity caused by the expansion process introduces plastic dissipation unrelated to the
fracture problem, the 

 

J

 

 values published in [12] were highly domain-dependent. Reproducing the
simulations, and computing the three terms in Eqn. 2, provides the results shown in Figure 1(b) [10]. Clearly
the correction terms in Eqn. 2 are important for obtaining domain independence of 

 

J

 

 in such problems.

For a given level of 

 

J

 

, the constraint conditions at the crack-tip are represented by the parameter 

 

Q

 

. 

 

Q

 

 has
been shown to characterize the magnitude of the hydrostatic stress over the forward sector ahead of the crack-
tip to a good approximation. 

 

Q

 

 is formally defined as    

 

Figure 1: 

 

Cold expanded hole with radial crack: (a) geometry, and (b) domain integral results
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 at θ = 0,  = n (3)

where, σo is the material yield strength, and n is a constant usually taken in the range 2 to 4 [6,7]. Q depends
on the crack-tip stress state in the body of interest, σθθ, and on the stress state in a plane-strain, Mode I
loaded, small-scale yielding reference solution, , where both exhibit the same J.

Because Q is a constraint parameter, it provides insight into the fracture process. Q near zero suggests that a
body is in small-scale yielding. As deformation levels increase in finite specimens, the hydrostatic stresses at
the crack-tip are relieved, producing a negative Q value, and signaling a loss in constraint. A negative value of
Q indicates lower crack-tip stress compared to a body in small-scale yielding and, therefore, a reduced
propensity for cleavage fracture at a given value of J. A positive Q-value indicates that high constraint exists
for a particular crack-tip state.

TRIAXIAL STRESS EFFECTS IN BRITTLE FRACTURE

This section serves as an example to illustrate the approach described above. It focuses on the prediction of
brittle fracture of the axially loaded, girth-welded shell shown in Figure 2(a), initiating from a
circumferential external flaw. Details of the study can be found in [13]. The properties assumed are those of
A516-70, a high hardening, ferritic, pressure vessel steel with uniaxial yield strength of 303 MPa. The RKR
parameters for this material are assumed to be σf* = 3.5σo and l* = 0.15 mm, or about 3 ferritic grain
diameters.

This analysis makes use of an assumed eigenstrain distribution. This distribution gives rise to residual
stresses that are typical of a continuously welded, double-sided joint in mild steel plate [14]. The nature of
continuous welding allows the assumption of an eigenstrain field that depends on the transverse and through-
thickness welding directions, but is independent of position along the weld. Further, the eigenstrain field is
assumed symmetric about both the centerline of the weld and the mid-wall of the shell. The residual stress
field computed when the assumed eigenstrain field is imposed in the un-flawed geometry is shown in
Figure 2(b), on the plane where the crack will be introduced. For the flaw orientation shown in Figure 2(a),
axial stresses correspond to the opening mode, and over the length of defect considered (from 0 to 0.3 in
Figure 2(b)), the axial RS is tensile. Accordingly, RS will tend to increase the crack-driving force and
therefore decrease the fracture load.

Fracture predictions using the RKR model show a strong constraint effect caused by RS. Fracture loads are
predicted to be 21.3 MN and 9.83 MN without and with RS, respectively. Because RKR is satisfied at these
loads, crack-tip opening stresses are nearly the same in each loading case. However, this occurs at markedly

Figure 2:  (a) Girth-welded pressure shell, (b) RS in the unflawed condition
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different values of J, 36.7 kN/m without RS and 13.5 kN/m with RS. Recall that these values of J are
computed using the domain integral, so they include the influence of RS on driving force. As shown in
Figure 3(a), the significant change in J at fracture is due to high constraint imposed by the RS field.
Figure 3(b) shows that this additional constraint suppresses plastic strain formation compared with the non-
residual stress bearing case. These interesting results demonstrate that RS can cause a significant change in
crack-tip constraint. Figure 3(a) shows that the tension loaded shell has quite low constraint when RS is
absent, but behaves like a body in small-scale yield when RS is present. If the RS bearing shell were assumed
to have constraint similar to the RS-free shell, the superposition approach would lead to an erroneous and
non-conservative fracture assessment. This observation gives credence to codified assumptions of high
constraint, as RS can combine with applied loads to produce highly constrained crack-tip fields in a geometry
and loading condition that would otherwise exhibit low constraint.  
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