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ABSTRACT 
 
A micromechanical model of fiber-reinforced metal matrix composites is established with considering the 
coating effects. During the investigation, the coatings and fibers are assumed to have a linearly elastic behavior, 
and the matrix respond viscoplastically with temperature. Micro-mechanics theories using the concepts of 
average stress and strain are adopted and developed to integrate matrix, coating and fiber properties for 
predicting the stress-strain response under thermomechanical loading. Considering the viscoplastic behavior 
of metal matrix, the Bodner-Partom unified theory is used as the basic constitutive equations of metal matrix. 
The main problem is reduced to a set of the ordinary differential equations of one order that can be resolved by 
numerical solution algorithms. In the application, three-layer model is applied to analyze the stress-strain 
response of a titanium matrix composite. Through the calculation, first, the thermo-residual stresses in the 
constituents of the material are obtained, then, the mechanical behaviors are estimated under the loading of 
thermomechanical cycles in the in-phase and out-of-phase cases.  
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INTRODUCTION 
 
The use of fiber-reinforced metal matrix composites in design has increased significantly in recent years with 
the development of aerospace industry [1,2]. Therefore, the knowledge of thermomechanical behavior of the 
materials is very important for designing the structures of the materials. In the past, several of these studies 
were limited to two-layer models that paid relatively less attention to the effects of coatings on the residual 
stress and assumed only two linking types: bonding and slipping, existing between metal matrix and fiber. 
However, the effect of coating could not be ignored, as some relevant investigations indicated [3].  
 
During the investigation, a micromechaical model for fiber-reinforced metal matrix composites with coating 
materials is presented. The model considers that the coating and fibers have a linearly elastic behavior, but the 
matrix responds viscoplastically with temperature. Micromechanical theories using the concepts of average 
stress and strain are adopted and developed to integrate fibers and matrix properties for predicting the response 



of unidirectional composites. The stress-strain equations are used to the basic three-layer models of metal 
matrix composites. Then the main problem is reduced to a set of ordinary differential equations. Numerical 
solution algorithms are developed to achieve the mechanical behavior of the composites by varying thermal 
and mechanical loading. The thermo-residual stress in fabrication of a fiber-reinforced titanium matrix 
composite is analyzed and the stress-strain response under the loading of thermomechanical cycles is 
emphatically estimated in this investigation.  
 
 
MICRO-MECHANICAL MODEL WITH COATING CONCEPT 
 
The Representative Volume Element (RVE) of unidirectional fiber-reinforced matrix composites is used to 
describe the stress-strain state. The selection of the RVE and the coordination is shown in Figure 1. 
 

 
 

Figure 1: Selection of the RVE and the coordination 
 

The concepts of average stress and strain are adopted in the model [4]. Suppose the stress field in a 
representative volume, V, of a unidirectional composite is denoted as σv. The volume average stress σ of the 
composite are defines by 
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where V f , V c and V m are the fiber, coating and matrix volume, respectively. The volume average stresses of 
the matrix, coating and fibers are described as follows 
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Similarly to the stresses, by introducing ,  and  as the volume average strains of the matrix, coating 
and fibers, respectively, the stresses 

mε cε fε
σ  and the strains ε  of the composite can be expressed as 
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The superscripts m, c and f indicate the matrix, coating and fiber, and vm, vc and vf are the volume fractions of 
the matrix, coating and fiber, respectively. 
 
Assuming that the deformation of the RVE is infinitesimal and the total strain can be decomposed into elastic, 
thermal and plastic components, and the fibers exhibit transverse-isotropic thermoelastic behaviors and the 
matrix has thermo-elasto-viscoplastic behaviors. Then, we have the incremental stress-strain relationship for 
the matrix 
 



mpmTmmem dddSd εεσε ++=                           (4) 
 
and the linear elastic stress-strain relationship for the fiber and coating 
 

cTccec ddSd εσε +=                              (5) 
 

fTffef ddSd εσε +=                              (6) 
 
The superscript e, p, and T denote the elastic, plastic (inelastic) related components and temperature, 
respectively. Sme，Sce and Sfe are the elastic compliance matrices of matrix, coating and fiber, respectively, 
which read for the plane stress case. 
 
The matrix, coating and fiber thermal strains in Equations (5), (6) and (7) are assumed to be linearly dependent 
upon the temperature difference ∆T and can be written as  
     

TmmT ∆λε =  , ,                        (7) TccT ∆λε = TffT ∆λε =
 
where λ are the thermal expansion coefficients. The strains of the matrix, coating and fiber within a layer along 
the fiber direction can be considered as: 
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In the three-layer model, the transverse matrix stress can be related to the fiber stress and coating stress in a 
form 
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where the subscript x and y denote the direction parallel and normal to the fibers, respectively. , ,  

and  are the stress partitioning factors. 
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Combining Equations above, we can obtain the expression for the relationship between matrix stress and 
coating stress in an incremental form as 
 

( )mpmTcTcm dddCdCd εεεσσ −−+= 21                       (11)  
 
and the relationship between coating stress and fiber stress as 
 

( )cTfTfc ddBdBd εεσσ −+= 21                           (12)  
and the relationship between matrix stress and fiber stress as 
 

( )mpmTfTcTfm ddAdAdAdAd εεεεσσ ++++= 4321                   (13)  
 
where C1 , C2 , B1 and B2 are the coefficients related to the Young’s modulus, volume percentage and stress 
partitioning factors of each constituent, and 111 BCA = , 2212 CBCA +−= , 213 BCA = , and 24 CA −= .  
 
The Bodner-Partom unified theory of viscoplasticity is used to establish the basic constitutive models of metal 
matrix. 
 



(a) Flow law is described as 
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where Sij is the deviatoric stress related to the stress tensor by kkijijijS σδσ
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(b) Scalar kinetic equation is described as 
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I and ZD represent the hardening due to isotropic and directional characteristics, respectively. 
 
(c) Isotropic hardening relationship is described as 
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with Wp is the inelastic work per volume, and W , ijijp εσ ′= && ( ) 00 ZI =Z ， ( ) 00 =p

&W . 
 
(d) Kinematic hardening relationship is described as 
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In the equations presented, the quantities D0，n，m1，m2，Z1，Z2，Z3，R1，R2，r1 and r2 are material parameters 
to be determined. D0 is a parameter representing the limiting value of the plastic strain rate under shear, usually 
assumed to be equal to 10-4 sec-1, except for cases of very high strain values. n is a parameter related to the 
viscosity of dislocation motion and controlling the strain rate sensitively. m1 and m2 are material parameters 
controlling the hardening recovery rate; Z1 is the saturation value for Z for high inelastic work, i.e. the 
maximum value of Z (a material constant).  Z2 is a parameter corresponding to the state of full thermal recovery. 
Z3 is a variable characterizing the directional (anisotropic) hardening; R1 and R2 are parameters characterizing 
the hardening recovery rate; r1 and r2 are indices of the hardening recovery rate. 
 
From equation (14) and (15), we can obtain: 
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Substituting the relationship between matrix stress and the plastic strain in equation (16)-(19) into equation 



(20), we can get the independent differential equations about the metal matrix stress. Then the main problem is 
reduced to three variables: matrix stress, the isotropic hardening variable and the directional-hardening 
variable. The equation (16), (18) and (20) that are related to these three variables can constitute a set of 
ordinary differential equations: 
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Given initial conditions, boundary conditions and a superposition of thermal and mechanical loads, equation 
(21) can be solved based on the classic fourth order Runge-Kutta method. 
 
 
STRESS ANALYSIS OF TI MMCS UNDER THERMOMECHANICAL LOADING 
 
A Ti-6Al-4V matrix composite reinforced with SCS-6 carborundum fibers was assumed to be stress free at a 
fabrication temperature of 900°C and then cooled down to room temperature, 25°C. The composite system 
analyzed consists of the titanium-based-alloy matrix with a 0.66 volume fraction, the fiber with 0.339 and the 
coating with 0.001. The coating behaviors are assumed as: the elastic modulus is equal to 200 GPa; the 
coefficient of thermal expansion is equal to 7.0×10－6/°C. When the temperature drops from 900°C to 25°C, 
different thermo-residual stresses arise in the constituents of the material. The longitudinal stress in the matrix 
and coating is positive, and in the fiber is negative. The transverse stress in the matrix is positive, and in the 
coating and fiber is negative. The shearing stress is the highest in the fiber. For example, Figure 2 gives the 
variation of the longitudinal residual stress along with the temperature in different constituents of the material.  
 

 
 

Figure 2: Variation of the residual stress along with the temperature 
 

The mechanical behaviors of the material under thermomechanical loading are obtained by composing tow 
cycles in in-phase or out-of-phase: temperature cycle of 150∼650°C and mechanical strain cycle of 
-0.004∼0.004 in longitudinal direction. In the in-phase case, the maximum tensile strain coincides with 
maximum temperature. In the out-of-phase case, the maximum compressive strain occurs at maximum 
temperature. Three cycles are performed in calculation. Before le first cycle, the material is considered at the 
temperature of 25°C and the thermo-residual stress has exhibited in it. The results of calculation show that in 
the first cycle of loading there is an inelastic stage because of the thermo-residual stress in the material. The 



stability of stress-strain response emerged from the second cycle of loading since the plastic deformation is not 
great in the first cycle. Comparing the in-phase case with the out-of-phase case, one finds that the stresses of 
the material in the out-of-phase case are greater than that in the in-phase case. Figure 3a shows the longitudinal 
stress-strain response of the metal matrix from the first cycle to the third cycle in the out-of-phase case. Figure 
3b shows the response of the total material in the same case. 
 
 

(a) 

 

(b) 
 

Figure 3: The stress-strain response in the out-of-phase case, (a) matal matrix, (b) total material 
 
 

CONCLUSIONS 
 
A three-layer micromechanical model of matrix/coat/fiber is used to analyze the stress-strain relationship of 
fiber-reinforces metal matrix composites under a superposition of thermal and mechanical loads. The concepts 
of average stress and strain are adopted and developed to integrate matrix, coating and fiber properties for 
predicting the response of unidirectional composites. The Bodner-Partom unified theory of viscoplasticity is 
applied to establish the basic constitutive models of metal matrix. The main problem then is reduced to a set of 
ordinary differential equations. In the application, three-layer model has adopted to analyze the stress-strain 
response of a titanium matrix composite. Through the calculation, first, the thermo-residual stresses in the 
constituents of the material are obtained, then, the mechanical behaviors are estimated under the loading of 
thermomechanical cycles in the in-phase and out-of-phase cases. The results should encourage the utilization of this 
model in the interface stress analysis and design of composite structures. 
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