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ABSTRACT

We describe a new, largely analytical model of the dynamic fragmentation of brittle materials that
accounts for the mechanics of the ongoing dynamic deformation and the development of material failure.
The model predicts fragment size and time to fragmentation initiation in terms of fundamental material
properties and the applied strain rate, in situations where the deformation rate prior to fragmentation
initiation can be treated as being uniform.  The predictions of the model are compared to some recent careful
experiments on dynamic fragmentation;  the agreement is shown to be quite good, significantly better than
that of two widely-adopted analytical models of dynamic fragmentation that are based on energy balance
arguments and which treat dynamic fragmentation as an instantaneous event.  Although more extensive
theoretical-experimental comparisons are needed, for a wider range of materials and strain rates, the present
initial comparisons imply that accounting for the mechanics of the ongoing dynamic deformation and
development of material failure in dynamic fragmentation leads to more accurate predictions, and that such
modeling need not be heavily numerically-based.
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INTRODUCTION

If a solid body is subjected to rapid energy input by, for example, impact with or by another body,
impingement of a laser or x-ray beam, rapid temperature change, etc., it is often observed that the body will
shatter into numerous pieces.  Reliable safety assessments of structural components that may be subject to
such rapid energy input demand accurate models of this dynamic fragmentation phenomenon, so that key
information such as fragment size can be predicted.  To date, the most widely applied theoretical models of
dynamic fragmentation appear to be based on relatively simple global energy balance arguments to predict



fragment size, such as the pioneering study of Grady [1] or its improvement by Glenn and Chudnovsky [2].
Such models assume that the fragmentation event occurs instantaneously, and thus are expected to be limited
in validity to situations involving extremely high strain rates.

We are interested in developing models of the dynamic fragmentation process that are analytical to the extent
possible, but which also account for the actual time-varying dynamic deformation and the mechanics of the
development of material failure that occurs before the final fragmentation event.  Not only should such
models be applicable over a wider range of applied strain rates, but they should reflect more accurately the
actual mechanics of the failure process and hence provide more accurate predictions of fragment size and
other pertinent quantities.

The present paper describes one such mechanics-based model of the dynamic fragmentation process for
brittle materials that we have recently developed (Drugan [3]), and compares its predictions, together with
those of the Grady [1] and Glenn and Chudnovsky [2] models, with the results of the careful impact
fragmentation experiments of Piekutowski [4].

MECHANICS-BASED DYNAMIC FRAGMENTATION MODEL

Drugan [3] proposed and analyzed two models of the dynamic fragmentation process in brittle materials:
one that treats initially “unflawed” material, and one that treats material containing a distribution of flaws.
Here we review the simpler “unflawed” material model.  As will be seen, this model assumes that flaws
develop at the locations and times predicted by a dynamic instability analysis.

We begin with perhaps the simplest realistic assumption for dynamic fragmentation analysis, as proposed by
Grady [1]:  a body that is experiencing, due to a rapid energy input that has just occurred, a uniform constant
volumetric strain rate that persists until fragmentation initiates.  We focus attention on a prospective
fragment inside this straining body, perform a dynamic analysis of the ongoing stress and deformation state
in the prospective fragment and ask when this deformation becomes unstable, signaling the initiation of
fragmentation and thus determining the critical fragment size and time of fragmentation initiation as a
function of material properties.

Since we here restrict analysis to brittle fragmentation, we model the material as being homogeneous,
isotropic linear elastic but, in addition, we model the surfaces that will become the fracture surfaces by
cohesive zones which incorporate a realistic traction-separation relation for fracturing brittle material.  For
simplicity, we idealize the prospective fragment as being a cube that is connected to the surrounding material
in the body by cohesive zones, as illustrated in Figure 1.  The advantage of doing this is that, given our
assumption of a uniform volumetric strain rate until fragmentation initiation, one observes that the stress and
deformation history in each of the three cube normal directions will be identical, and therefore it is sufficient
to analyze one of these – i.e., the three-dimensional problem is reduced to being one-dimensional.

We begin by analyzing the dynamic stress and deformation fields within the elastic cube.  The three-
dimensional version of Hooke’s law for a homogeneous, isotropic linear elastic solid is
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where  E  is Young’s modulus, ν  is Poisson’s ratio,  σij  and  εij  are components of the stress and
infinitesimal strain tensors, respectively, δij  is the Kronecker delta, and a repeated index implies summation.
Using the fact that   ε ε ε11 22 33= =  and the shear strains are all zero, due to our uniform volumetric strain rate
assumption, the normal stress-normal strain relation parallel to any cube axis has the form, from (1),



Figure 1.  A prospective fragment, consisting of an elastic cube with (initially undetermined) side length  l,
and half cohesive zones that connect it to the remainder of the body.  Displacement of the cube edge
relative to its center is denoted by  δs, and of the half cohesive zone relative to the cube edge by δc.
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an effective one-dimensional tensile modulus  Ê   being defined as indicated, and we have employed the
relation of the normal infinitesimal strain component to the spatial derivative of the displacement.
Substitution of (2) into the x1-direction equation of conservation of linear momentum gives (when no body
forces act) the governing equation for the  u1-component of the displacement field in the elastic cube:
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and  ρ  is mass density.  Identical equations apply for the other two coordinate directions, so as observed
earlier, it is sufficient to analyze this one direction.  Equation (3) has the general solution

u x t f x ct g x ct1 1 1 1( , ) ( ) ( )= − + + , (4)

where  ƒ  and  g  are arbitrary functions, to be determined by the boundary and initial conditions, and  c  is
the elastic wave speed defined in (3).

We seek the equation governing the half cohesive zone displacement  δc ;  this is accomplished by enforcing
on (4) the initial conditions in accord with our assumption of a constant and uniform strain rate  ε̇o , and the
boundary conditions of normal stress and displacement continuity, at the cube edges, with the cohesive
zones.  The latter make use of our assumption that the total strain rate (in each direction) of the elastic cube
plus its half cohesive zones remains the constant ε̇o  before fragmentation.  One can eliminate all other
unknowns to obtain the following governing equation for δc  (see Drugan [3] for details of the analysis):
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ˆ /E c2  is a constant having time dimensions.  In deriving (5), we have employed the
normal traction/normal separation relation for the cohesive zones suggested by the ab initio atomistic
calculations of Rose et al. [5,6]:
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where σmax  is the strength of the cohesive surface, which is attained when  2δc = δ*.  Observe that (5) is
valid only for times sufficiently short that an elastic wave reflection does not take place;  in situations where
fragmentation initiation takes longer than this, wave reflections must be accounted for and (5) is modified;
see Drugan [3] for details.  We here restrict discussion to situations (i.e., to sufficiently high strain rates) in
which fragmentation initiation occurs before any elastic wave reflections occur, so that (5) is valid.

There are two unknowns to be determined:  the time to fragmentation initiation, and the minimum fragment
size.  We thus impose two conditions to determine these unknowns: First, we hypothesize that fragmentation
initiation will occur at the time  tcr  when the stress level in the cohesive zone has just attained the cohesive
strength σmax.  In terms of the cohesive zone displacement, this requires [see (6)]

2δ δc crt( ) *= . (7)

Second, the instability condition determining the minimum possible fragment size, lmin, is the condition that
at time tcr, the prospective brittle fragment, which is the elastic cube, has just stopped expanding.  This
requires, using the assumption of uniform strain rate until fragmentation initiation ′ + ′ =δ δ εs ct t l( ) ( ) ˙ /o 2:
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For the very high strain rate regime considered here, defined by the condition that fragmentation initiates for
tcr ≤ lmin/c, (5) applies.  [For lower strain rates not satisfying this condition, the modified analysis is given in
Drugan [3].]  Thus, combining (7) and (8) and using (5) to express     ′δc t( ) , we find the minimum fragment
size to be:
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where tcr  is obtained by solution of (7) [which in turn requires the numerical solution of (5)].  This can be
done once and for all in terms of nondimensionalized quantities;  Drugan [3] did this, and found that the
resulting predictions for minimum fragment size and time to fragmentation initiation are very accurately fit
by the following equations in the very high strain rate regime:
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Here, the nondimensionalized quantities are defined as:
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where all quantities are defined previously except   KIc , the plane strain fracture toughness and  e, the natural
logarithm base.

REVIEW OF PREVIOUS ENERGY-BALANCE MODELS

A pioneering and widely adopted model of dynamic fragmentation in brittle materials is due to Grady [1].
One postulate of this model, which we have adopted here as noted above, is that a body is initially in a state
of rapid uniform expansion – i.e., the strain rate is constant throughout the body.  Grady focused attention on



a body portion that would ultimately become a fragment, and decomposed its total kinetic energy into two
parts: that of the total mass moving with the center of mass of the body portion, and that associated with
relative motion of material particles with respect to the body portion's mass center.  He postulated that the
latter part of kinetic energy is available to drive fragmentation, and predicted fragment size by equating this
energy to that required for the total surface energy to form a new fragment, tacitly assuming fragmentation to
be instantaneous. For cubic fragments as modeled here, the Grady prediction of fragment size is
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Glenn and Chudnovsky [2] improved the Grady [1] model by noting that in addition to the local kinetic
energy of a prospective fragment, its stored elastic energy is also available for new fracture surface
formation.  Application of this more complete energy balance argument demands the additional requirement
that no fragmentation occurs until the stress state attains a critical value, σmax, at which level instantaneous
fragmentation is postulated to occur.  The Glenn and Chudnovsky [2] prediction of fragment size is
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COMPARISON OF THE PRESENT AND ENERGY BALANCE MODELS WITH EXPERIMENT

It should first be observed that it would be difficult to conduct an experiment in which the assumption made
by all the analytical models discussed here, namely that a body experiences a uniform and constant strain
rate until fragmentation initiation, was precisely met everywhere.  However, a set of careful experimental
results exist which appear, on the basis of the flash radiographic records, to correspond to a quite uniform
fragmentation event, so that our assumption should be met at least in a large portion of the fragmenting body.
These are the experimental results of Piekutowski [4].  The experiments involved the high-speed impact of
2017-T4 aluminum spheres with 6061-T6 aluminum plates, causing dynamic fragmentation of the aluminum
spheres.  Here we compare the measured fragment sizes from the experiments with the predictions of the
energy-based models and our new model.  The material properties for the 2017-T4 aluminum spheres are:

E = 73 GPa,   ν = 0.33,   ρ = 2791 kg/m3,   σmax = 430 MPa,   KIc = 20 MPa  m . (15)

(The material property values are from Kishida and Nakagawa [7], whose dynamic fracture experiments
showed a substantial reduction in fracture toughness of this alloy at high strain rates; KIc ≈ 20 MPa  m  is a
lower bound to their high-strain-rate data.)  The strain rates in the experiments of Piekutowski [4] ranged
from 0.9 to 2.6 × 105/s;  he reported only the strain rates for these two extreme tests.  Table 1 shows the
experimental results from these two tests, together with the predictions of the present model [Equations (10)
and (11)], the Grady model [Equation (12)], and the Glenn and Chudnovsky model [Equations (13) and
(14)].  Note that, although the present model predicts minimum fragment size, when the strain rate is uniform
and material properties variation is neglected, as assumed, all fragments are the same size, so the minimum
and average fragment sizes coincide.  (The fact that all fragments are not the same size in the experiments
shows that our two assumptions are not precisely met.)  Also, it is easy to verify that the strain rates in the
experiments are in the “high strain rate regime”, that is, they satisfy the needed inequality in (10).



ε̇o , s–1

l, mm

(Piekutowski
experiments)

l, mm

(present model)

l, mm

(Grady model)

l, mm

(Glenn &
Chudnovsky model)

0.9 × 105 0.814 0.853 1.58 1.39

2.6 × 105 0.506 0.543 0.778 0.731

Table 1. Comparison of experimental results of Piekutowski [4] for the average measured fragment size
with the theoretical predictions of the present model [Equations (10), (11)], the Grady
model [Equation (12)], and the Glenn and Chudnovsky model [Equations (13), (14)].

DISCUSSION

The comparison in Table 1 of the three dynamic fragmentation models with the experimental data of
Piekutowski [4] shows that the present, mechanics-based dynamic fragmentation model agrees much more
closely with the experimental measurements than do the two energy-based models which ignore the
mechanics of the dynamic fragmentation process.  As noted above, the energy-based models assume an
instantaneous fragmentation event, so their predictions would be expected to be less accurate the lower the
applied strain rate;  this is clearly reflected in the comparisons in Table 1, which also shows that the accuracy
of the present model changes little with changing strain rate.  It should be emphasized that none of these
three models involves any “free” parameters:  all make specific predictions based only on the set of material
constants listed above.  Although the comparisons presented here involve a limited set of experimental
results, restricted to a single material and a somewhat limited range of strain rates, and much further
experimental-theoretical comparison should be conducted, these initial comparisons indeed appear to
confirm the importance of accounting for the actual time-varying dynamic deformation and the mechanics of
the dynamic failure process in the accurate modeling of dynamic fragmentation.
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