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ABSTRACT

A mathematical model of a crack along a thin soft interface layer is studied in this paper. This type of
interface could arise in a ceramic support that has been coated with a layer of high surface area material
which contains the dispersed catalyst. Asymptotic analysis is applied to replace the interface layer with a
set of effective contact conditions. We use the words “imperfect interface” to emphasise that the solution
(the displacement field) is allowed to have a non-zero jump across the interface. Compared to classical
formulations for cracks in dissimilar media (where ideal contact conditions are specified outside the crack),
in our case the gradient field for the displacement is characterised by a weak logarithmic singularity. The
scalar case for the Laplacian operator as well as the vector elasticity problem are considered. Numerical
results are presented for a two-phase elastic strip containing a finite crack on an imperfect interface.
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INTRODUCTION

Motivation for this work arises from the study of the fracture of ceramic catalytic monolith combustors
that are being incorporated into new proto-type designs of gas turbines. The ceramic monolith consists of
an extruded structure that contains a large number of parallel channels, e.g. consisting of: 62 cells/cm?,
each cell 1.lmmx1.1lmm square, with an open frontal area of 66%. The ceramic surface is coated with
a high surface area material (e.g. 7-AlyO3) which contains the dispersed catalyst. It is in the catalytic
layer (also known as the wash-coat), where the combustion reactions take place (e.g. CH4+205 — COy+
2H,0), and the energy associated with this highly exothermic reaction is released. In the application in
a gas turbine combustor, temperatures of the catalyst layer could vary from ambient conditions (when
the turbine is not working) up to 1100°C. It is important that the catalyst layer remains firmly bound to
the ceramic support structure during this process. If it cracks and shears, then catalyst will be lost from
the monolith which would a) result in a lost in performance of the combustor, and b) lead to possible
damage of components downstream of the combustor. Further information on catalytic combustion and



layer of catalyst, this gives a two-phase structure. In examining the surface, cracks are clearly visible in
the layer. The cracks would have occurred as a result of a) shrinkage of the coated layer (after drying
and calcining), and b) differences in coefficients of thermal expansion as the material was exposed to a
wide range of temperatures. The presence of a crack on the surface is not considered necessarily to be a
problem, however, if the crack propagates and the interface is sheared then this will lead to catalyst loss.

It is documented in engineering literature that the damage of ceramic structures is accompanied by
“crack bridging”. In the model presented here we assume that the bridging effect exists along the whole
interface surface between the substrate and the layer of catalyst (we shall also use the words “imperfect
interface” or “soft adhesive”), and, in addition, a crack with zero tractions on its faces is introduced along
the interface contour. We study the problems of anti-plane shear and elasticity problems for this two-
phase structure. Mathematical models of interfacial cracks are well-developed in the literature for the
cases when ideal contact conditions prevail on an interface surface outside a crack. Asymptotic models
of elastic adhesive joints were introduced in [2]. The adhesive was modelled as a thin soft layer where
effective contact conditions involve continuity of tractions and a linear relation between the traction
components and the displacement jump across the adhesive. Laminated structures with linear interfaces
were also studied in [3].

In the present work we analyse mathematical models of cracks along imperfect interface boundaries and
make an emphasis on the asymptotic behaviour of the solution and its derivatives near the crack ends and
at infinity. In contrast to the results already published in the literature, on the interface boundary (outside
the crack) we allow for a non-zero displacement jump specified as a function of traction components.
The presence of this condition affects the asymptotics of the displacement and stress components in the
vicinity of the crack ends.

ANTI-PLANE PROBLEM FOR A STRIP WITH A SEMI-INFINITE CRACK ALONG
AN IMPERFECT INTERFACE

Consider two bodies 2, and €2 connected through a thin interface layer €2y of thickness €. Assume
that the material occupying .2 and €2y is characterised by the shear moduli p,, p_ and py = ep
respectively, where p is of the same order as py and p—. For the case of anti-plane shear, the displacements
ut, v and u(© in Q. ,Q_ and Qq satisfy the Laplace equation in the corresponding strips and the following
boundary conditions
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Let ¢t = e 'y, so that within Qy, |y| < €/2, and hence [t| < 1/2. In terms of z and ¢
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Denote by u(()o) the leading term of u(?). Then to leading order, the tractions are continuous across the
interface layer and proportional to the displacement jump x(z) = u(x, +0) — u(z, —0):
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First, we analyse the Dirichlet problem. Assume that a three-phase strip contains a semi-infinite delam-
ination crack {—oo < & < 0,y = £0}. Ahead of the crack, there exists a thin layer of soft adhesive.



Formally, ‘the problem is set as follows
Vu(z,y) =0, |z|]<oco, —b<y<0, 0<y<a,

u(z,a) =u(z,—b) =0, |z]< oo,
%| = ux(x), x>0; %| =p(x), =<0 (1)
M4 y y=+0 = HUX\T), v Mt y y=+0 = P\T), .

where p(z) characterises the shear load applied to the crack faces. To reduce the boundary-value problem
(1) to a Wiener-Hopf functional equation, we extend the second boundary condition in (1) to the whole
real axis:
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where () is unknown as x < 0 and ¢(z) = 0 as © > 0. Applying the Fourier transform to the problem
(1), using the condition (2) and introducing the integrals
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we get the following Wiener-Hopf equation

P (a) =G(a)[p®" () + P (a)], —o00 < a < +00, (3)
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Since the function G(«) is even and has zero increment of argG(«) along the real axis, the solution of
the problem (3) is defined by the following formulae
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where C = {a : Im(a) > 0}, ¢ = {a: Im(a) < 0}, ¥*(a) and X*(a) are the limit values of the
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Note that the function G(«) is bounded at the origin and tends to 1 as &« — £o0o. Assume that the load
p(z) is given by

N
p(x) =) dpe™®, <0, (4)
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where dj, oy are constant coefficients and 0 < oy < as < ... < ay. Then the displacement jump admits
the following series-representation
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where
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—i0, (0, > 0) are the elements of the countable set of roots of G(«) in C~. We note that Im{X*(+ir)} =
0, 7 > 0 and Im{iG'(—io,)} = 0. Thus, the displacement jump decays exponentially as x — +oo. It

Xi = X (iay) = exp{% /0°° InG(3) }, Im(Xe) =0,



() :AO(e’\”), where \g = min{3, 7, all}. Analysis of the solution in ’a\n/eighb(;urhood of the crack tip
yields that the displacement jump x(z) is continuous and the function () is discontinuous at z = 0:
X(x) =N +O0(z), x = 0; Y(x)=My+O(z), x = —0, ¥(x) =0, x > 0. Here
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These formulae and the relation (2) indicate that the traction o,,(x,0) is bounded but discontinuous at

the crack tip and its jump is

[0z (2, 0)[3=15 = =1 (=0) = =M.

The stress component o,,(z,0) has a logarithmic singularity at x = 0.

Next, we analyse the Neumann problem. Its formulation is similar to the previous problem, with the
Dirichlet boundary conditions on the upper and lower parts of the strip being replaced by the homoge-
neous Neumann data. The unknown function u(z,y) satisfies the equation and the contact conditions
(1). Instead of the second relation in (1), we assume that
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We seek the solution in the class of functions with the finite energy integral and with the following
behaviour at infinity

lu(z,y)| < C1, x— —o0, lu(z,y)| < Coe™ 1 — 400,

uniformly with respect to —b < y < a, where C1,Cy and § are positive constants. To specify the solution
uniquely, we impose the following orthogonality condition

/O:O g—Z(x, +0)dz = 0. (5)
The corresponding Wiener-Hopf problem becomes
O (a) =G(a)[udT(a) + P (a)], a e, T ={a:Im(a)=—d € (-6,0)}, (6)
Gla) =1+ 2 (coth aa coth ab> .
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Here ®*(«) is an analytic function in DT, and the functions ® («), P~ («) are analytic in D~, where
Dt ={a:Im(a) > =6y}, D™ ={a:Im(a) < —d}. The solution of the problem (6) is not unique:
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However, the original Neumann boundary value problem is solvable uniquely, and constant C' is deter-
mined by the condition (5) as follows C'= ¥*(0) — iX*(0)P(0). Further, assuming as before that the
load has the form (4) and analysing the behaviour of the solution at infinity, we get

W(x) = A+ O0(M7),  y(z) = —%A +O(M), & — —o0,



Figure 1: The displacement jumps x;(z) (a) and x2(z) (b) vs. x for the lower material brass (+ + +)
and CFRP (...).
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Thus, in contrast to the Dirichlet problem studied in the previous section, the functions ¢(x) and x(x)
do not vanish as + — —oo. For positive z, the function ¢ vanish, and the displacement jump decays
0
exponentially x(z) = O(e*"g )“’), r — +00 (—750%0) is the first root of the function G(«) in D~ and
(0)
oy’ >0).

PLANE STRAIN PROBLEM FOR A STRIP WITH A FINITE CRACK ALONG AN
IMPERFECT INTERFACE

Consider the domain with the same geometry as before but with the crack along the imperfect interface
being finite. The displacement vector u = (u, v) satisfies the Lame equation

Viu + VV - u=0.

1—2V:|:

The traction conditions are posed on the upper and lower parts of the boundary of the strip and on the
crack faces 7, = fi(x), 0, = fo(z) as |z| < ¢, y = 0. The interface conditions outside the crack are

Ty (2,0) = anxi(z) + araxa(x),  o0y(2,0) = apxi(z) + axa(z), |z| >¢, y= 0.

Here x1(2) = uly—yo — tly=—0, X2(z) = v]y—40 — v|y——o are the displacement jumps. The constants ay;
are given. For an isotropic interface layer, ay; = p, ags = A + 2, a9 = g = 0, €, e are the Lamé
elastic moduli. We seek the solution with finite elastic energy, and assume that the displacement field
decays at infinity. Introduce new functions ¥, Wy such that

Txy(ib', 0) = 0411)(1(37) + O!ng(iU) + ‘Ifl(ib'),

oy(2,0) = aax1(2) + agexa(w) + ¥a(z), || < oo,
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Figure 2: The stress components 7, (a) and o, (b) along the interface vs. x for the lower material brass
(++ +) and CFRP (...).

where U;(z) = 0 outside the crack. By the method of integral transforms, the original problem is
reducible to the following Fredholm system of the second order

2
Wy (cx) + %Z/t {log |€ — x| + Ky; (€ — 2)} y(c€)dE = fr(cx), |a] <1, k=1, 2, (7)
j=1""

where (i, = cou;[(1 — vy)/ps + (1 —v_)/u_], e, vy are the shear modulus and Poisson’s ratio of
the upper (lower) part of the composite strip. The function Kj;( — x) is bounded at £ = x and its
first derivative has a logarithmic singularity. Analysis of the system (7) shows that the displacement
jumps x1(z), x2(z) are continuous at the points © = ¢ and the stress components o,(x,0), 7., (z,0) are
bounded and discontinuous at the ends x = f¢. The system of integral equations (7) is solved numerically.
Figures 1 and 2 show the displacement jumps and the stress components along the interface for the case
fi=0,fs =—1,a=b=c=1. The upper material is aluminium with the elastic modulus £, = 70 GPa
and Poisson’s ratio v, = 0.3. The lower material is either CFRP: E_cprp) = 135 GPa, v_crrp) = 0.3,
or brass: E_(p,) = 100 GPa, v_(p,y = 0.25. The interface layer is assumed to be made of FM 1000 and
characterised by the normalised moduli, £ = 10 GPa, vy, = 0.41 whereas the real values are given by
Ey = 1.24GPa,vy = 0.41, and thus here € = 0.124. The parameters that are involved in the interface
condition in this case have the following values, ay; = 0.35 GPa; ag = 2.3 GPa, and a1y = ag; = 0.
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