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ABSTRACT 
 
Explicit correlations between two groups of anisotropic effective properties - conductivity and 
elasticity - are established for porous materials with anisotropic microstructures (non-randomly 
oriented pores of non-spherical shapes). In the present work, the correlations are derived in the 
framework of the non-interaction approximation. The elasticity tensor is expressed in terms of the 
conductivity tensor in the closed form.. Applications to realistic microstructures, containing 
mixtures of diverse pore shapes are discussed.  
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INTRODUCTION 
 
An intriguing fundamental, as well as practical, question concerning anisotropic porous materials is 
the following one: can different effective physical properties be explicitly linked to one another? 
Such cross-property correlations become especially important for applications if one property (say, 
electric conductivity) is more easily measured than another property (full set of anisotropic elastic 
constants). The importance of such correlation has been pointed out by Berryman and Milton [1] 
and was particularly emphasized by Gibiansky and Torquato [2]. 
 
 We consider solids with anisotropic microstructures formed by non-randomly oriented pores of 
non-spherical shapes, including mixtures of diverse shapes. The matrix material is assumed 
isotropic. The microstructures of this kind are relevant for many realistic materials, both man-made 
and naturally occurring. We examine cross-property correlations between two groups of anisotropic 
effective properties: elastic compliances and thermal conductivities. Note, that the problem of 
thermal conductivity is mathematically equivalent to the ones of electric conductivity, dielectric and 



magnetic permeabilities or diffusion coefficients; therefore, our results apply to the mentioned 
physical properties as well. 
 
 We show that the correlations can be established in the explicit form that directly express the 
tensor of effective elastic compliances in terms of the conductivity tensor. These expressions are 
approximate, with the accuracy that remains good for a wide range of pore geometries. 
 
 Cross-property correlations between various effective properties of heterogeneous materials 
have been examined in several works. The most relevant for the present work is the classical paper 
of Bristow [3] in which an explicit connection between the effective conductivity and effective 
elastic moduli of a solid with cracks was derived. The derivation was done in the framework of the 
non-interaction approximation and for the case of random crack orientations (overall isotropy).  
 
 The conductivity – elasticity correlations were further investigated in the work of Berryman and 
Milton [1] on the two-phase composites, where the cross-property bounds (that are narrower than 
the classical Hashin-Shtrikman’s ones) were established. The cross-property bounds were 
substantially advanced by Gibiansky and Torquato [4,5], who narrowed them under additional 
restrictions on the composite microgeometry and on the properties of constituents. Gibiansky and 
Torquato [4] also considered the transversely isotropic material (fiber reinforced composite) and 
established bounds for two of the five effective elastic constants in terms of the effective 
conductivities. Gibiansky and Torquato [5] established the cross-property bounds for the isotropic 
solid with cracks; this result is particularly valuable since neither upper nor lower non-trivial 
bounds for the effective elastic constants of cracked solids in the classical sense (i.e. in terms of the 
crack density) cannot be established [6].  
 
 It should be mentioned that correlations between other pairs of effective properties were 
considered in a number of works. Levin [7] interrelated the effective bulk modulus and the effective 
thermal expansion coefficient of the two phase isotropic composites. Milton [8] established cross-
property bounds for the transport and the optical constants of isotropic composites. Similar bounds 
for the electrical and the magnetic properties were given by Cherkaev and Gibiansky [9]. The 
general approach to establishing various cross-property correlations was outlined by Milton [10], 
see also the recent review of Markov [11]. 
 
 The present work focuses on the conductivity-elasticity correlations for the anisotropic porous 
materials (an isotropic matrix containing spheroidal pores of arbitrary orientational distribution and 
generally diverse aspect ratios). In contrast with the works that focus on bounds, our work derives 
the explicit cross-property correlations for the full set of effective anisotropic constants. In this 
sense, the present work can be viewed as an extension of Bristow’s [3] explicit cross-property 
correlation for the isotropic cracked media. 
 
 The results of the present work are derived in the non-interaction approximation. Strictly 
speaking, it applies to the case of low concentration of pores (although, as far as materials with 
cracks are concerned, computer simulations of Kachanov [6] show that the predictions of the non-
interaction approximation remain valid at relatively high crack densities). The key to our analysis is 
the recent finding of Shafiro and Kachanov [12] that the fourth rank effective elasticity tensor  

for the anisotropic porous microstructures can be represented, with good accuracy, in terms of a 
certain symmetric second rank tensor  and unit tensor 
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ijω ijδ . The present work establishes a 
connection between  and the effective conductivity tensor. ijω
 



 
 
 
ON THE EFFECTIVE ELASTIC PROPERTIES OF POROUS MATERIALS.  
 
We briefly summarize the results on the effective elasticity of materials with pores of diverse shapes 
and orientations that are relevant for our analyses (see [12,13] for details). 
 
Cavity compliance tensors. For a solid of volume V  containing one cavity, the total strain per V  
under remotely applied stress tensor  is a sum:  σ
 
                 (1) εσ:Sε ∆+= 0

where  is the compliance tensor of the matrix (a colon denotes contraction over two indices). In 

the case of the isotropic matrix,  
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 Due to linear elasticity, strain  is a linear function of the applied stress: ε∆
 
                  (2) σ:Hε E∆ =
 
where fourth rank tensor EH  - a cavity compliance tensor - was calculated for 3-D ellipsoidal pores 
by Kachanov et al (1994). Superscript “ E ” indicates the elasticity problem (in contrast with CH , 
introduced in Section 3 in connection with the conductivity problem). 
 
 Let us consider a 3-D cavity of the shape that possesses three mutually orthogonal planes of 
geometric symmetry, with unit normals  (this case covers ellipsoids but is not restricted to 
them). Cavity compliance tensor 

nml ,,
EH  has, due to symmetry, the following structure: 
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where the three groups of components of EH -tensor - dimensionless coefficients iii ,, ζηξ  - 
represent the normal, shear and Poisson's ratio compliances of the cavity. For the ellipsoidal shape, 
they are given in the appendix in terms of Eshelby’s tensor. 
 
 Further analysis is best done in terms of the elastic potential, rather than compliances: for a 
solid with many cavities, such a formulation identifies the proper parameters of pore density (that 
may not reduce to porosity if pores are non-spherical) and establishes the overall anisotropy in the 
cases of non-random pore orientations.  
 
 For volume V  containing a cavity, the potential in stresses - such a function  that (1) can 
be written as 

( )σf
ijij f ∂σ∂ε = - is a sum of two terms: 
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where  is the potential in the absence of cavity In the case of the isotropic matrix 0f

( ) ( ) ( ) ( )   11 0000 σσσ trtrf νν −⋅+= 2E 2 and f∆  is the change due to cavity.  { }
 For a solid with many cavities,  
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where  are linear functions of applied stress .  These functions reflect pore shapes, as well as 
elastic interactions between pores; their determination constitutes the most difficult part of the 
problem. Provided the mentioned functions are specified, the effective compliances  are found 
from the relation 

( )k∆ε σ
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  ( ) klijklijklijklijij SfSf σσσσε ≡∂∆∂+=∂∂= 0         (6) 
 
We consider the approximation of non-interacting cavities. It is of the fundamental importance: 
besides being rigorous at small defect densities, it is the basic building block for various effective 
field methods. In this approximation, each cavity is placed in remotely applied stress σ  and is not 
influenced by other cavities. Then, ( ) ( )
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where summation over cavities may be replaced by integration over orientations, 
 
Representation of a cavity compliance tensor in terms of a second rank symmetric tensor. 
 For certain shapes of a cavity, its characterization by EH - tensor can be reduced, with sufficient 
accuracy, to the one in terms of a certain second rank symmetric tensor Ω . Namely, we seek to 
approximate (uniformly with respect to all stress states) the potential change due to cavity 

( ) σHσ :: Ef 21=∆  by the expression: 
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where  are scalar coefficients that depend on the cavity shape and on iB 0ν  (they are given in the 
Appendix and illustrated in Fig.2) and where  and  are the second rank and fourth rank unit 
tensors, respectively (  and 

I
ikδ

J
ilδijijI δ= jkjlijklJ δδ2 += ). The "isotropic terms" in (8) are 

expressed in terms of stress invariants and do not depend on the cavity orientation. Symbols  and 
 denote hereafter tensor (dyadic) products of vectors or tensors. 
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 The condition for reduction of (3) to the simplified form (8) reduce to certain  restrictions on 
components of  tensor EH ; see [12] for details. With the exception of a sphere, these conditions do 
not hold exactly, but they are satisfied, with good accuracy, for spheroids. In the case of a solid 
containing many pores, a similar condition is also satisfied. 
 
EFFECTIVE  CONDUCTIVITIES  OF  A  MATERIAL  WITH  SPHEROIDAL  PORES 
We consider reference volume V  of a material with the isotropic thermal conductivity  
containing an insulating ellipsoidal pore;  are semi-axes of the pore and  are unit 
vectors along them.  The change of heat flux vector 

0k

321 ,, aaa nml ,,
Q∆  (per volume V ) due to the cavity is a 

linear function of the far-field temperature gradient G  and hence can be written in the form: 0

 
               (9) 0GHQ ⋅=∆ C

 
where second rank tensor CH  is a function of the inclusion shape (superscript “C ” indicates the 
conductivity problem). It has been derived in[14]. In the framework of the non-interaction 
approximation (each inclusion is subject to the same far-field temperature gradient, unperturbed by 
the presence of other inclusions), the effective conductivity tensor  is expressed in terms of a sum 
(or integral over orientations)   over individual inclusions: 

K
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where k  is the tensor of (isotropic) conductivity of the matrix.  I0
 
CROSS-PROPERTY CORRELATIONS BETWEEN ANISOTROPIC COMPLIANCES 
AND CONDUCTIVITIES  
 
Utilizing the above results we obtain the following explicit cross-property correlations that apply to 
an arbitrary mixture of pores of diverse aspect ratios – the central result of the present work:: 
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This relation covers all pore shapes (including mixtures of diverse shapes) and orientational 
distributions of pores in a unified way. It contains the matrix constants (elastic constants and 
conductivity) and does not contain any adjustable parameters. The shape dependent coefficients at 
tensorial terms in this basic relation are plotted in [13].  
 
The presence of shape factors – coefficients at the tensorial terms in (11) – reflects the fact that pore 
shapes affect the elastic and the conductive properties differently. However, this difference is 
relatively mild, as seen from a relatively mild variation of these factors in the entire range of 



possible shapes and vanishes altogether in the limiting cases of strongly oblate (aspect ratio smaller 
than 0.15) and strongly prolate (aspect ratio larger than 10) pores. 
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