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ABSTRACT 
 
A new numerical model estimating the effect of randomly located micro-cracks on the structural response 
of a material is presented. Both heterogeneities of the structure and stress concentrations are taken into 
account by the model, that makes use of an homogeneous matrix in which randomly distributed cracks are 
present. The Cell Method is a recently developed numerical method that can be used to solve such a model. 
Both elastic and elastic-plastic behaviours can be included in the model. The Cell Method is presented and 
results of simulations from tests in both the elastic and plastic fields are discussed. 
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INTRODUCTION 
 
A lot of work has been done in the past in order to estimate the effect on the material properties of a low 
concentration of elliptical and circular voids. A self-consistent approximation of a material with identical 
polygonal randomly oriented voids has been proposed in [1]. In the crossover regime beam lattice models 
[2] along with interpolation functions [3] have been proposed. Finite element models have also been used to 
estimate the stiffness of a 2D initially elastic continuum containing square perforations [4]. A new model 
for the investigation of the effect of randomly located voids on the structural response of a material is 
presented in this paper. The discrete model makes use of a homogeneous matrix, in which randomly 
distributed cracks are present, as shown in Figure 1. 
 

   
 

Figure 1: Randomly distributed void cells in homogeneous matrixes. 
 



The Cell Method concept is deeply different from that of other widely used numerical methods such as 
FEM, and brings some advantages with it. As will be shown, CM is a “real” discrete method, in the sense 
that field equations are directly written for a whole region and no differentiation is needed to form the field 
equations. CM is thus applicable in all those cases in which variables cannot be differentiated, for example 
when the displacement field undergoes large variations, i.e. when the size of the heterogeneities is the same 
scale of that of the mesh [5]. A model such as the mentioned homogeneous matrix with distributed 
heterogeneities can be then solved with the Cell Method leading to consistent results. 
 
It must be also mentioned that some aspects of the Cell Method may recall the Finite Volumes Method or 
the so-called direct – or physical – approach [6]. These methods did not have much success, maybe due to 
an intrinsic difficulty to develop higher order elements. On the contrary, higher order interpolation 
functions are easily implemented in CM.  
 
When compared, CM results agree with those obtainable with other numerical methods, although 
convergence and accuracy are better than those obtained with FEM with the same interpolation order [7].  
 
The present research makes uses only of linear interpolation functions and focuses on the other mentioned 
peculiar aspect of the Cell Method: the possibility to have heterogeneities the same size of that of the mesh. 
 
THE CELL METHOD FOR PLANE ELASTICITY 
 
The Cell Method has been recently introduced by E. Tonti [8, 9] and is currently being applied in several 
fields, such as thermal conduction, electromagnetism, mechanics of porous materials, and fracture 
mechanics. Application of the method to high porosity materials such as sintered alloys has been discussed 
in [10], where the Young modulus of four sintered alloys was computed and simulation showed a good 
agreement with experimental results. 
 
In order to describe the Cell Method for plane elasticity, let us consider a body of constant thickness t, 
loaded in a plane. The variables used in the problem can be classified in  
− Configuration variables, that is kinematic variables such as nodal coordinates and displacements, 

strain tensor, etc.,  
− Source variables, that is static and dynamic variables such as forces, torques, momenta, etc. 
− Energy variables, which result from the product of a configuration and a source variable, and which 

we are not going to use in the following. 
 
According to this classification, the method implies the use of two staggered meshes: configuration 
variables are to be associated with a primal complex of cells, in this case a Delaunay triangles complex, 
while source variables are associated with a dual complex, the Voronoi tessellation associated with the 
primal mesh. Other choices for the dual complex are possible. Each node of the primal cell will be 
surrounded by a dual cell, which can be regarded as an influence region for the inner node. 

 
 

Figure 2: Primal (Delaunay), dual (Voronoi) complexes of cells and their ensemble. 
 

If a Delaunay 3-nodes primal cell is used, the displacement field over the primal cell will be interpolated by 
a linear function. Strain components in a point inside a cell are given by  
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t is the thickness of the sample, Ac the area of the cell, and the meaning of Aij is shown in Figure 3. 
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Figure 3: Geometrical quantities. 

 
 
Introducing the constitutive matrix for the primal cell [D]c  we may write the constitutive equation in the 
usual form 
 

{ } [ ] { } [ ] [ ] { }cccccc uBDD == εσ  
 
In order to write equilibrium equations for the influence region of the node, we shall now need to express 
the forces acting through each side of the dual polyhedron surrounding the node. 
 
As expected using a linear interpolation of the displacement field, strain and stress tensor components are 
constant within each primal cell. As a consequence, the surface force T (see Figure 4) will be given by  
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and for the three nodes of a cell 
 

         { } [ ] [ ] [ ] { } [ ] { }ccccc
T
ccc uKuBDBtAT −=−=      (1) 

 
where { } and [K] represents the 6x6 stiffness matrix for the cell. { T

yxyxyxc TTTTTTT 332211= }
 
We shall call Ũh the dual cell surrounding node h (see Figure 5), Th the total force acting on the boundary of 
Ũh - due to all the cells that surround node h-, Fh the resultant of volume forces and of external forces acting 
on Ũh through the boundary cells: 
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Figure 4: Forces acting through the sides of the dual cell of node 1. 
 

Equilibrium can be then written for region Ũh:  
 

0=+ hh FT  
 

that is a set of 2n linear equations in the 2n unknowns uix, uiy (i=1,…,n) which can be also written as 
 

[ ]{ } { }FuK =                       (2) 
 
and solved with the usual methods. 
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Figure 5: Equilibrium of the dual cell of node h. 

 
SIMULATIONS AND DISCUSSIONS 
 
It can be easily seen that the constitutive matrix may vary freely from one cell to the neighbour. As a 
consequence, the size of the heterogeneities can be the size of the mesh.  
 
In a first set of simulations a 1498 cells matrix was tested in the elastic field. A number n of cells (see 
Figure 1) was set to void in each simulation and a tensile test was performed imposing a displacement on 
the right end of the sample, while the left end was constrained, though allowing lateral contractions of the 
sample. Figure 6 shows the ratio between computed Young modulus and the unimpaired one E*/E vs. f, 
where f=n/N, n= number of void cells, N=total number of cells, E=210 GPa. For each void density 5 
simulations were run. Porosity being equal, fluctuations of Young modulus can be observed in the graph, 
due to different distributions of the void cells, whose location varies randomly from one simulation to 
another. The plotted line corresponds to the linear fit with slope –2.47. The decrease in stiffness is similar to 
that reported in [1, pp.360-361] for FEM simulations with square perforations, although less pronounced. 
Figure 7 shows the stress concentrations near the void cells (black) in one of the simulations. 
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Figure 6: Cell method estimates of stiffness E*/E vs. f.  

 

 
Figure 7: Stress concentrations near the void cells (black) in one of the simulations.  

 
The ratio E*/E vs. f with low void concentrations is shown in Figure 8 for 25 simulations on a 1498 cells 
matrix. Small fluctuations of Young modulus can be observed in the graph. The plotted line corresponds to 
the self-consistent model proposed in [2], which assumes a quicker decrease of stiffness (slope –4.2) than 
the one computed with the proposed method. 
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Figure 8: Young modulus E*/E vs. f. 
 
PLASTICITY 
 
Plasticity may also be implemented in the framework of the Cell Method. An elastic perfectly plastic 
material and von Mises yield condition have been assumed. For a primal cell  

 
{ } [ ] { } { }[ ]cccc D λεσ −=  

 
where {λ}c represents the homogeneous inelastic strain tensor for cell c. Equation (1) becomes now 
 

{ } [ ] { } [ ] [ ] { } [ ] { } [ ] { }cccccc
T
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and the fundamental equation (2) in incremental terms is 
 

[ ]{ } { } [ ]{ }λ∆∆∆ LFuK +=    (4) 



The non-linear incremental problem is solved dividing the load history into steps, at the beginning of which 
displacements and internal stresses are known, and considering a backward difference integration scheme. 
Equation (4) can be solved for {∆u}, the second invariant of the deviatoric stress computed, and von Mises 
condition used to update {∆λ}. The process is repeated until convergence is obtained, then a new step is 
considered. Figure 9 shows the progressive plasticization of a 1498 cells matrix with 33 void cells, yield 
strength Ry = 430 MPa. From simulations, E* = 195 GPa in the initial, elastic, part of the diagram. 

 
Figure 9: The model with void cells (black), initial and progressive plasticization (grey). 

 
The result of the simulation is reported in Figure 10 in the form of a stress-strain plot. Figure 10 shows also 
the stress-strain curve obtained from simulation running an unimpaired matrix (E = 210 GPa). 
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Figure 10: Stress-strain curve of 4198 cells matrix, with 33 and without void cells.  

 
CONCLUSIONS 
 
A new numerical model, consisting of a homogeneous matrix in which randomly distributed cracks are 
present, has been employed to estimate the effect of randomly located micro-cracks on the structural 
response of a material. The model considers both heterogeneities of the structure and stress concentrations, 
and may be solved with the Cell Method. Both elastic and elastic-plastic behaviours have been included in 
the model, and results of simulations from tests in both the elastic and plastic fields have been discussed. 
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