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ABSTRACT 
 
Length scales are essential to the understanding of small volume deformation and fracture in 
emerging technologies.  Recent analysis by two groups at the atomistic [1] and mesoscopic [2] 
levels have shown the importance of the volume to surface ratio to the indentation size effect (ISE) 
at small depths of penetration.  We have interpreted this in terms of the plastic work under the 
contact and the surface work associated with the creation of new surface or the excess surface 
stress.  Treating this as a modified Griffith criterion the case is made that this same length scale 
should apply to the delamination of thin films.  By making this simple equivalency in length 
scales, an R-curve analysis for crack growth resistance, GR, in thin film delamination emerges.  
This recovers the classic Ehys

2σ  term as well as the fact that interfacial toughness should scale 
with the square root of incremental crack growth.  Here σys is yield strength, h is thickness and E is 
modulus of the film.  As applied to thin Cu films bonded to silicon substrates with a thin innerlayer 
of Ti, the model is in good agreement. 
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INTRODUCTION 
 
Current research into nanotechnology is increasingly aware of the limitations of small scales in 
micromachines, MEMS, microelectric interconnects and magnetic recording heads.  One of these 
limitations is when device reliability is compromised by poor thin film adhesion.  The last decade 
has seen a considerable effort at applying linear elastic fracture mechanics concepts toward film 
fracture problems [3–5].  To a lesser extent has there been progress in understanding the elastic-
plastic thin-film delamination problem particularly on the experimental side of the ledger.  This is 
partly because of a host of possible length scale variables that can be appropriately incorporated to 
fit any given set of data.  The confusion comes in as to how to exactly measure an appropriate 
length scale and as to which one(s) should be included.  To illustrate the problem, we enumerate in 



Table 1 some of the possible length scales and evolutionary microstructural features of importance 
to small volume deformation and fracture.  The first five parameters with asterisks are some of the 
possible fundamental length scales which should be considered in thin film deformation and 
fracture.  We consider interplanar slip band spacing because of possible sub-cell structures which 
might evolve during a thermal-mechanical processing history.  The remaining parameters can 
easily evolve during the deformation and fracture history, e.g. those associated with 
nanoindentation induced yield or fracture events. 
 
 

TABLE 1 
POSSIBLE LENGTH SCALES* AND EVOLUTIONARY MICROSTRUCTURAL FEATURES 

OF IMPORTANCE 
IN THE DEFORMATION AND FRACTURE OF SMALL VOLUMES 

 
* ℓs – Length of dislocation pile-up 
* ℓd – Distance between sources (near an indenter or in the vicinity of a crack 

tip) 
* ℓp – Interplanar spacing for slip bands 
* d – Nanocrystalline grain size 
* h – Film thickness 
 hp – Pile-up around indentation 
 c – Nearest approach of ⊥ to a crack tip 
 ⊥N  – Total number of  s'⊥
 Ns – Number of slip bands 
 ⊥l  – Spacing between on a slip band s'⊥
 ns – Number of on a given slip band s'⊥

 
We believe we have fortuitously arrived at a single length scale parameter that controls both small 
volume deformation and fracture behavior of thin films. 
 
This occurred because of two separate pathways we have been following, one dealing with the 
indentation size effect (ISE) in bulk crystals and one addressing delamination fracture resistance of 
thin films.  While these seem quite disparate their commonality was that both phenomena were 
studied by nanoindentation.  These included the ISE associated with an abrupt yield excursion in 
single crystals [2,6] and interfacial fracture resistance from indentation induced blister formation 
[7,8,16], both of which involved small volume deformation and fracture.  For a number of years 
now we have been drawing a parallel between the point forces associated with a crack tip and an 
indenter tip [9] and the fact that the driving forces for the two might evolve similar localized 
dislocation arrangements.  In that paper [9] we also noted that the pile-up height around an 
indentation behaves similarly, as a function of load, for both continuum and discretized models.  
This further suggested that contact mechanics might provide the connective link between 
mesoscopic and continuum models.  However, it wasn’t until we examined the same thin film 
system using these two approaches that we could convince ourselves that this is truly the case and 
that the connective link is the length scale that controls deformation and fracture of small volumes.  
What we have been able to show is that with no unknown constants or parameters, the deformation 
length scale directly determined from a series of nanoindentations into thin films leads to an R-
curve analysis for the delamination fracture resistance of those same films.  This is currently 
shown for two Cu films of 120 nm and 3.3 µm thickness bonded with Ti to silicon wafers. 
 



THEORETICAL BACKGROUND 

Here we consider in order some theoretical background for length scales as applied to the 
deformation of bulk material and the deformation and delamination of thin films, all at small scale.  
Specifically, we address the deformation and fracture response to nanoindentation at the nanometer 
scale. 

Length Scale(s) for Bulk Deformation  
Consider a conical tip with a 70 nm tip radius indenting into a surface producing concentric 
dislocation loops along glide cylinders.  When an oxide breakthrough event occurs these travel 
back to the free surface resulting in pile-up as schematically shown in Figure 1.  The sketched 
semicircle is the calculated “elastic-plastic” boundary from continuum theory.  From experimental 
observations of dislocation rosette patterns, we know that dislocations extend well beyond the 
continuum estimate.  For example, from AFM profiles, we know the rosette pattern extended well 
beyond the pile-up region observed at the surface, measured to be 500 nm and >3000 nm, 
respectively [10].  In addition, we now know that dislocations are emitted under the tip prior to the 
displacement excursion and that these are released commensurate with the yield excursion.  
Nevertheless, the continuum theory appears to capture the essence of the plastic pile-up process.   
 

 
 

Figure 1: For the sample case of a 70 nm tip radius, the contact radius and plastic zone size are 
drawn to scale.  The corresponding pile-up estimated from Eq. (1) would be 8.8 nm 
representing 35 dislocation loops. 

 
An example of a yield excursion and the corresponding pile-ups in a <100>Ta single crystal is 
shown in Figure 2.  In a recent paper [10], the continuum representation of pile-up [11] was found 
to give a good fit to plastic pile-up as determined by AFM measurement.  For the contact radius, a 
being much smaller than the plastic zone size radius, c, plastic pile-up, hp at the contact edge is 
given by  

2
)1()( 2

3 πσ
ν 








−≅

a
c

E
ah ys

p  (1)

  
as formulated from Johnson’s cavity model of contact mechanics [12].  In principal, this maximum 
pile-up should relate to the release of dislocations forming pile-up, as is idealized in Figure 1.  
Given that pile-up should be some fraction of the dislocations formed during the yield excursion, 

excδ , and that these to first order are bexcδ dislocations, where b is the Burger’s vector, we find 
 1;)( <′′≅ αα bnah s  (2) 
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xcursion around a 1 µm radius diamond tip showing (a) displacement jump 
resulting pile-up measured by AFM.  

 
s [2] on the indentation size effect (ISE) we had shown that the volume to 
plain the increases in hardnesses observed at very small depths of penetration 

he hypothesis was that the surface work was commensurate with the volume 
d to a constant volume (V) to surface ratio (S) ratio at small depths.  We had 
 this plastic volume under the tip, 32 2cπ , and contact surface area, πa2, as a 
g 

 (3) 

act radius, a, and plastic zone radius, c.  Furthermore, the volume work of 
22δcys and the surface work gave sa γπ 2

  . (4) 

) gives this work ratio in terms of the length scale to be 

   . (5) 

ted elsewhere [6] this ratio is shown for two sets of <100> single crystal data 
three different tip radii were utilized in each case.  A fourth sharpest tip for 
ered to avoid complications of nonspherical contact.  These data in Figure 3 
t the surface work is an appreciable portion of the total work for the first 
ometers of penetration.  The separation of the data within each material is 
c ratio with sharper tips producing a greater plastic penetration for the same 
ucing a greater portion of volume work.  The separation of the data between 

mostly due to the yield stress to surface energy ratio with the dimensionless 
eing 670 for <100> W and 240 for <100> Al.  This further suggests that for 



small length scales the surface work could become extremely important as this dimensionless 
parameter drops below 100. 
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Figure 3: Volume to surface work ratio as a function of depth for a tungsten single crystal with 
 nm, τ4700≅sl

≅sl

ys = 400 MPa and γs = 2.8 J/m2 and for an aluminum single crystal 
with  nm, τ7900 ys = 30 MPa and γs = 1.0 J/m2.  Plastic zone sizes are those 
reported elsewhere [6].  

 
This prompted us to examine Eqs. (1) and (2) more closely since the plastic pile-up of Eq. (1) is 
directly related to this length scale as it contains c3/a2.  As we have recently discussed [10], the 
number of dislocations emitted, which then form a piled-up slip band, is obtained from Eqs. (1) 
and (2) eliminating h(a) to give 
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Elimination of c3/a2 through Eq. (3) and substituting τys/µ for σys/E gives 
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with ).23(⋅′=αα   Since ,1<′α it is tempting to take 1~α which then makes Eq. (7) identical to 
the simple pile-up theory of Eshelby et al. [13].  The simplified picture of Figure 1 is that an 
inverse pile-up forms and at the yield excursion these release into the free surface causing 
topographical pile-up around the indenter tip.  It is significant that Eq. (1) is from continuum 
theory appropriate to the macroscale while Eq. (7) is from dislocation theory appropriate to the 
mesoscale. 
 
Because this appeared to work so well for small volume penetration into bulk single crystals, it 
was decided to apply this to the deformation of thin metal films bonded to and constrained by 
relatively rigid elastic substrates.  Herein then lies the key.  When we drastically change the size 
scale of the component as in thin films, how does this change the length scale(s) appropriate to 
deformation and fracture.  As discussed above, in Table 1 we enumerated the possible length 
scales and a few of the evolving structural parameters that might be involved in deformation and 
fracture of thin films.  The length scale for a thin film, clearly smaller than that for a corresponding 



single crystal, could be a dislocation pile-up length, a nanocrystalline grain size, d, which scales 
with thickness but not necessarily linearly, or film thickness, h, itself.  The other parameters in 
Table 1 tend to be evolutionary during a point contact process and can eventually lead to friction 
changes, wear, film fracture or film delamination.  Let us first consider definition of the V/S value 
for thin films as may be important to any of these deformation and fracture processes.  This is then 
followed by application to a film delamination process. 
 
Length Scale for Thin Film Deformation 
An in-depth series of tests [14] for four different aluminum films of 0.34, 0.5, 1 and 2 µm 
thickness gave the relationship between the plastic zone size to indenter contact radius, c/a, and the 
normalized film thickness to be 
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with α = 5.3.  The extent of plasticity depends on the degree of constraint and the yield stress.  For 
smaller thicknesses, h, the substrate more easily constrains plastic flow coupling with an elevated 
yield stress to reduce c/a.  For greater penetration and hence greater contact radii, a, the constraint 
factor reduces c/a.  For a thin film, it is simple to translate this into a volume to surface ratio for 
indenters of rotational symmetry, cylinders, spheres or cones.  A contact radius, a, giving a surface 
area of πa2 and a constrained plastic zone, c, of πc2h gives 
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See the schematic of Figure 4(a).   
 
Elimination of c through (8) and (9) gives 
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 (a)      (b)  
Figure 4: Plastic volumes associated with V/S for (a) a conical indenter into a constrained thin 

film producing a plastic zone radius of c; (b) a conical indenter producing a contact 
diameter of 2a0 producing an initial crack of ~ 2b0 which grows to 2b under increasing 
load forming a plastic zone of  .

IPR
 
 



In reality this appears to be a mixed length scale since it depends both on the film thickness and the  
sharpness of the indenter which controls the contact radius for a given penetration depth.  One 
notes that this length scale can be quite small for film thicknesses on the order of 300 nm.  Since a 
1 µm radius indenter penetrating to the film/substrate interface would give a contact radius of 720 
nm, nm from Eq. (10), about an order of magnitude smaller than the size scale for the 
corresponding single crystals reported elsewhere [2]. 

670≅sl

 
Length Scale Application to Thin Film Delamination 
If the volume to surface ratio concept is controlled by the balance of surface work and plastic 
energy dissipation, clearly it is applicable to thin film delamination which can follow the modified 
Griffith criterion.  This is schematically shown in Figures 4(a) and (b) for indentation and film 
delamination.  With initial indentation only plastic deformation in a zone of length 2c forms as 
addressed above.  This defines .SVs =l  With the slightest increase of load this could trigger 
interface cracking at 2b0 which then propagates and arrests at 2b.  Now the plastic energy 
dissipation of importance to arrest is the deformation in the plane strain plastic zone at the advance 
of the crack front.  We use the plane strain zone for two reasons here.  First, we will apply this to 
films on rigid substrates where the plasticity is constrained.  Second, a further constraint is 
provided by a superlayer of a high modulus material such as tungsten or tantalum nitride which has 
been applied on top of the ductile film to store elastic energy for the crack propagation process.  
This superlayer technique has been the subject of a number of recent investigations [15,16].  This 
constrained plane strain plastic zone size is given by 
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where KI is the applied stress intensity factor.  At this point the plastic volume for arrest can be 
assessed considering a plastic annulus of outer diameterb ,

IPR+  inner diameter b and height  
giving 
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The corresponding surface area created by this event is the film delamination given by 
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From (12) and (13) we see that the ratio is 
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For a number of trials using a sensible range for the incremental crack growth (blister size) and the 
plastic zone size we calculated V/S from Eq. (14) to be 
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which varies by about a factor of two.  We’re inclined toward the upper limit which represents 
crack-tip plastic zones smaller than the contact plastic zone.  At this point we make two 
simplifying assumptions, one tenuous and one supported by observation.  The first is that the 
length scale associated with plastic deformation during thin-film indentation is the same as that 
associated with producing crack-tip plasticity in thin films.  Consider a typical thin film 
delamination fracture with MPa·m1≅IcK 1/2 for a 300 nm thick film having a yield strength of 500 
MPa.  This gives a plane strain plastic zone at the crack tip to be 420 nm from Eq. (11) and 
compares to the 1000 nm indentation plastic zone calculated from Eq. (8).  Since the volume scale 
of these two zones is similar, we propose that the same length scale should apply.  The second 
assumption, as supported by observations using focused ion-beam machining (FIB) is that the 
contact radius just prior to delamination, a0, is the same as the initiation defect size, b0.  
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Figure 5: SEM image of the Focused Ion Beam cross-section of a delamination in Cu film. 
 
As seen in Figure 5, a FIB cross-section of a copper film delaminated from a silicon wafer shows 
this to be reasonable.  With l being the same size scale for indentation (I) and cracking (c) of 
these films and a ~ b

c
s

I
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0 one finds from (10), (11) and the approximate upper limit of (15) that 
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From the first and fourth equalities this gives  
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From the second and fourth equalities, this reduces to 
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Given that the strain energy release rate is ,2 EKI  we see that this represents a resistance curve of 
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where ∆b/b0 is the ratio of incremental crack extension to the initial defect size and Ehys

2σ is 
essentially the leading term in nearly all thin film resistance models involving plasticity.  This 
proposed R-curve behavior for forced thin film crack extension is seen to evolve directly from a 
simple volume to surface length scale.  To recapitulate, we propose that both indentation and 
fracture occurring from small volume deformation are controlled by the same length scale and that 
this leads to a delamination resistance criteria.  Some verification of this proposed model based on 
existing thin film Cu data follows. 
 
 
EXPERIMENTAL 
 
A considerable amount of thin-film Cu delamination data exists as derived from superlayer 
indentation [15,16].  A schematic of this test is shown in Figure 6.  This has shown that the thin 
film fracture energy increases with film thickness, a result consistent with 4-pt. bend data 
independently determined by Lane and Dauskardt [17].  An example of the blister formed by 
indenting a 1µm film of W bonded to a Cu film with a Ti underlayer between the Cu and the 
silicon substrate is shown in Figure 7.  
 
 2 Indenter 

Thin Film  ha) 
2a  Substrate  

 
2 

 Thin Film hb)  2a 
 Substrate 
 2
 
 Thin Film c) h  2a 

Substrate  
 
 
Figure 6: a) No buckling during indentation; b) double-buckling during indentation; c) single-

buckling after the indenter tip removal.  
 
At the time we noted a typical factor of three scatter in adhesion energy which we originally 
attributed to a b/b0 effect different that that represented by Eq. (17a).  Consider then the case for 
the same film loaded repeatedly to ever increasing loads at different indentation locations as was 
accomplished here.  Assume the crack starts in each case when the penetration reaches a critical 



contact radius, say b0 ~ h, since then the spherical indentation nearly reaches the interface.  It is 
easy to see that if the penetration continues that ∆b/b0 increases and the resistance must 
correspondingly increase to support larger stored elastic energy release rates at higher applied 
loads.  This is different from a purely brittle interface where a crack, once triggered, will grow and 
then arrest with the larger the b/b0 the lower the fracture resistance.  This latter result is obtained 
from the driving force side of the equation as has been derived by Marshall and Evans [18] and 
Rosenfeld et al. [19].  The analysis associated with Eq. (17a) concerns itself with the resistance 
side of the equation and what happens if further crack extension along an elastic-plastic interface 
beyond the initial arrest is driven by ever increasing loads.  Equation (17a) is consistent with the 
slow crack growth observations of Au/Al2O3 interfaces [20] and remarkably similar to schematics 

showing resistance curves (ΓR vs. ∆a) for models based upon the embedded process zone [21]. 
 
Figure 7: Optical micrographs of indentation iduced blisters with (right) and without (left) a W 

superlayer. 
 
 To ascertain if such a simple length scale model can predict crack growth resistance we 
reexamined some Cu thin film data based on the superlayer indentation technique. For 120 nm and 
3.3 µm thick Cu, data are shown in Table 2.  Referring to the schematic of Figure 4, we show the 
corresponding values of b/b0, penetration depth, δ, incremental crack extension, ∆b, and the 
measured strain energy release rate from laminate composite analysis [7].  The latter is an 
extension of the Marshall and Evans analysis [18].  In the tabulation for both thicknesses, it is seen 
that as ∆b/b0 increases, GI generally increases.  For a more quantitative comparison, it was 
necessary to obtain the length scale relationship as had been accomplished for aluminum films and 
described at Eq. (10).  For Cu thicknesses of 200 nm to 2000 nm thick deposited on Si substrates 
with a TiW innerlayer, we have preliminary results.  For these two thicknesses, we find that the 
form of Eq. (10) is similar with the only difference being the constant α ~ 4.8.  This is shown for 
one thickness in Figure 8.  This gives 
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and is seen to correspond well to the data of Table 2 reproduced in Figure 9.  Here, we have used 
σys = 600 MPa for the 120 nm film and σys = 460 MPa for the 3300 nm film.  Equation (17b) 
slightly underpredicts the thicker films and overpredicts the thinner ones in Figure 9 implying that 
the factor of 16 difference in toughness predicted is too small.  On the other hand, using a 4-pt. 
bend technique, Lane and Dauskardt observed only a factor of four increase in toughness for the 
same increase in thickness.  Note that this difference in the experimental values could be real due 



to differences in bond strengths giving differences in ∆b/b0 for the same film.  In these two sets of 
data, Volinsky, et al. [15,16] used a Ti bond layer while Lane and Dauskardt [17] used a Ta/TaN 
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Figure 8: Fit of Eq. (8) to nanoindentation produced plastic zone radii, c, normalized on contact 
radii, a, as a function of a/h with h being film thickness.  For these Cu films, .8.4≅α  

 
bond layer between the Cu and the substrate.  Furthermore, there is a degree of uncertainty about 
a0 ~ b0 which could easily account for any difference between prediction and observation.  For 
these reasons we propose that this type of volume/surface approach be a serious candidate for the 
length scale controlling deformation and fraction of small volumes. 
 

TABLE 2 
 

     
Cu Thickness, nm Depth, δ, 

nm 
Delamination 
Radius, b, nm 

( ) 2/1
0bb∆  GI, obs. 

     
120 546 6800 1.67 2.2 

 555 6800 1.67 2.3 
 805 8400 1.91 4.5 
 819 9000 2.00 3.7 
 830 8300 1.90 5.6 
 941 10,900 2.25 3.2 
 952 11,200 2.29 2.9 
 1067 11,900 2.37 3.9 
 1083 12,100 2.39 3.9 
 1116 11,700 2.35 5.0 
 1549 22,300 2.42 9.1 
 1869 21,200 3.28 11.9 
 1892 31,900 4.09 8.4 
 1910 22,300 3.37 9.0 
 1915 21.900 3.34 8.95 

3300 1767 6500 0.95 59.9 
 1783 6700 0.985 57.3 
 1811 6700 0.985 60.6 
 2344 7700 1.12 131.1 
 2351 8200 1.19 101.3 
 2412 8200 1.19 115.6 
 2818 9900 1.38 123.7 
 2853 9600 1.35 146.5 
 3091 10,100 1.40 182 



SUMMARY 
 
 We have first shown a connectivity between mesoscopic and macroscopic deformation 
theories through plastic pile-up around a nanoindenter.  This recovers the classic dislocation pile-
up model of Eshelby [13].  To achieve this, a volume (V) to surface (S) ratio model has been 
invoked, previously shown [2,6] to predict the indentation size effect (ISE) at small penetration 
depths.  The length scale, ,SVs =l  has then been shown to apply to both small volume 
deformation and fracture through nanoindentation studies of thin film copper bonded to silicon 
substrates.  This produces a fracture toughness which is proportional to the fourth root of the 
length scale or, alternatively, a resistance curve with the resistance proportional to the square root 
of the incremental crack growth.  With increasing crack growth it is shown that Cu bonded to 
silicon substrates with a thin Ti layer increases its fracture resistance by a factor of three. 
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Figure 9: Crack growth resistance of Cu films as a function of incremental crack extension 

compared to Eq. (17b). 
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