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ABSTRACT 
 
It has been demonstrated that gradients in the elastic modulus of a surface can affect the toughness of that 
surface [1,2]. Specifically, experimental results have correlated enhanced toughness with engineered 
gradients created by co-sintering a depth-dependent admixture of constituent particles with different 
elastic stiffnesses.  While such engineered composites have average gradients that match the calculated 
optimal gradient, the composite microstructure will have variations in its lateral (in-surface-plane) 
properties and variations about the optimal gradient.  The discrete nature of the particulate composites 
gives "stochastically graded" microstructures. 
 
In this work, we numerically analyze the effect of stochasticity on the predicted optimal material 
properties and their variation.  We achieve this analysis by generating a series of microstructures that 
have the same average surface gradient, but with variable placement of the second phase. An image-based 
computational tool, OOF [3] which maps material microstructures onto finite element meshes, is used to 
determine the local stress state. The microstructural stress is used in conjunction with a statistical 
representation of failure. The effect of damage accumulation on the microstructural stresses is calculated 
iteratively.  We characterize the effect of stochastic placement of second phase particles on the toughness 
of these materials with a specified gradient in their surface elastic coefficients and we investigate the 
stability of a surface crack in such materials. 
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INTRODUCTION 
 
Functionally graded materials (FGM) are composites that display spatially varying properties in one 
thickness direction and may be characterized by spatial microstructure variations.  The spatial 
microstructures variations are usually achieved through a non uniform distribution of the second phase 
and these variations can be tailored in order achieve favorable responses to prescribed thermo-mechanical 
loads. FGM have received recent interest due to their particular properties: functionally graded surfaces 
provide new microstructural designs for enhanced surface damage resistance performance in ceramic 
materials. In particular, Giannakopoulos et al. [1,2] demonstrated that gradients in the elastic modulus of 
a surface can affect the toughness of that surface. In their experimental work, enhanced toughness has 



been correlated with engineered gradients created by co-sintering a depth-dependent admixture of 
constituent particles with different elastic moduli.  
 
In recent years, a lot of work has been carried out to study the behavior of FGM. Specifically, the finite 
element method has gained increasing use to determine the overall mechanical response of the materials 
to given solicitations. Usually FEM approaches are applied on the scale of the entire structure, the macro 
scale, using commercial codes such as ABAQUS (see for example [2] and [4]).  On the other hand, unit  
cell models based on the FE analysis have been considered. However, these models cannot account for 
spatial variability of the constituents, due to the assumption that a structure is composed of the same 
microstructural representative volume element (RVE) in every part. Thus, the standard micromechanics 
approaches based on the concept of RVE are not suitable in the analysis of FGM, since the RVE cannot 
be univocally defined  because of continuously changing properties through thickness. In fact, such 
engineered composites have average gradients that match the calculated optimal gradient on the macro 
scale, but the composite microstructure will have variations in its lateral properties and variations about 
the optimal gradient. The discrete nature of particulate composites that have been examined 
experimentally results in  "stochastic gradients" in both microstructural directions. Neither the effect of 
lateral variations or perturbations about a prescribed gradient have been studied analytically. 
 
The aim of this work is to investigate the microstructural randomness and discreteness for fixed 
macroscopic material gradients. Thus, a discrete computational micromechanical model is adopted. An 
image based finite element code, OOF, is adopted. The peculiarity of this tool is that it is able to analyze 
arbitrary microstructures, by mapping digitized images of microstructures and their local properties to a 
two-dimensional finite element mesh. In this way microstructural features can be readily modeled. To the 
authors' knowledge, the influence of randomness of microstructure on the macroscopic global response of 
FGM has been studied in literature only for the problem of thermal residual stresses [6], using a 
physically based micromechanics model. Here we analyze the effect of microstructural discreteness on 
the fracture and damage behavior of FGM, coupling OOF that calculates the local stress state with a 
statistical approach for brittle fracture, as described in the following section. 
 
 
METHOD AND MATERIAL 
 
As cited in the previous section, the image-based computational tool OOF is used in conjunction with a 
statistical representation of failure. In order to study the crack propagation, a new finite element has been 
implemented [7], based on a probabilistic approach for brittle fracture: the two-parameters Weibull law 
[8]. The microstructural mesh generation is performed using OOF and the microstructural stresses are 
calculated for the given loading conditions. Depending on the local probabilities of failures, this element 
loses stiffness as it undergoes damage and microstructural stresses are redistributed among the next 
elements. Thus, the effect of damage accumulation due to failure of the material can be calculated 
iteratively and damage can be accumulated. 
 
The FGM considered in this study is the one experimentally characterized by Jitcharoen et al. [2]. This 
material is a graded alumina-glass composite whose Young modulus increases with depth beneath the 
surface. The thermo-mechanical  properties of the constituents are summarized in Table 1. 

 
 

TABLE 1 
 

 Young modulus (GPa) CTE (10-6 °C-1) Poisson's ratio 
Alumina 386 8.8  0.22 
Glass 72 8.8  0.22 

 
The coefficients of thermal expansion (CTE) of the two phases are approximately the same, so that 
thermal residual stresses do not arise upon cooling from the processing temperature. 



The variation in Young's modulus of as much as 50%, introduced over a distance of 2mm, follows the law 
[2] 
 

E(z)= Esurface +E0zk 
 
where Esurface=254GPa, E0=85.325GPa.mm-k and k=0.497, 0mm< z <2mm. The authors demonstrated that 
this gradient in the elastic modulus led to optimal materials properties in the contact-damage behavior. 
 
Since we want to numerically analyze the effect of stochasticity on the predicted optimal elastic gradient, 
a series of "random" microstructures that have the same average surface gradient, but with variable 
placement of the second phase, is generated. An example is given in Figure 1 (in white alumina, in black 
glass). 
 

 
 

Figure 1:  example of a random microstructure. 
 
For each discrete depth z (corresponding to a layer), the Young modulus of the so represented composite 
can be calculated using the rule of mixtures relation 
 

E graded(z)= Vglass(z)Eglass + (1-Vglass)Ealumina 
 
where Vglass is the volume fraction of glass at each z. The profiles of elastic modulus were so calculated 
for 50 different random generated microstructures and reported in Figure 2. This picture reports the 
average values for each z and also average values +/- standard deviation (dashed lines). Thus a range of 
variability in the elastic modulus profile for real (i.e. discrete) microstructures is individuated.  
 

 
 

Figure 2:Young modulus vs depth z. Average values for 50 different microstructures 
 

The average elastic modulus profile approximately coincides with that of a continuous (i.e. homogenized) 
material. The continuous material is achieved in this analysis generating a microstructure with several 
different layers, each one with a single value of elastic modulus. In the limit of an infinite number of 



layers, the model is continuum. An example is illustrated in Figure 3, where for clarity the number of 
layers has been fixed to 20. 
 

 
 

Figure 3 Continuously graded composite and corresponding Young modulus vs depth 
 
 
RESULTS AND DISCUSSION 
 
The 50 different microstructures generated as described in the previous section were meshed with OOF. 
Each mesh has about 20000 triangular elements. The thermo-elastic constants are known from Table 1, 
while the two Weibull parameters are assumed to be m=25 and σ0=0.1GPa for both phases. 
The effect of stochastic placement of the second phase on the toughness is characterized analyzing the 
microstructural damage evolution. We achieve this analysis placing a pre-existing surface vertical crack 
in each sample and incrementing the load up to the first failure. When the first element fails, local stresses 
are redistributed and the load can be incremented until the second failure occurs. In this manner, it is 
possible to track the damage evolution as the crack grows in the microstructure. Figure 4 displays the 
crack paths obtained for one microstructure. The elements that are damaged are colored in black. 
 

 
 

Figure 4: Damage evolution in a microstructure 
  
In order to quantify the damage accumulation, a damage parameter has been defined as the area of  the 
damaged elements divided by the total area. This parameter is plotted vs the strain applied in Figure 5 for 
one single graded microstructure and a sample of the same dimension of homogeneous material (with 
elastic modulus equal to the average elastic modulus through depth of the graded material). As can be 
noted from the picture, the sample of the graded material is less damaged, thus confirming the better 
performance of FGM over traditional materials. 
 



Then, in order to quantitatively asses the effects of stochasticity of real microstructures on the fracture-
damage behavior, the curves resulting from the 50 different computations have been averaged and 
standard deviations have been calculated. Figure 6 reports the average damage-vs-strain curve and the 
same curve +/- the standard deviation. The average curve (solid line) would coincide with the damage 
curve obtained with the continuously graded model. The two dashed curves (mean +/- standard deviation) 
plot how much the damage response can vary in real (and thus stochastic) microstructures. In other 
words, this micro-mechanic model is able to illustrate the influence of discreteness and randomness of the 
microstructure on the damage accumulation. 
 
As observed also in previous studies [6], the need to consider microstructural features for modeling FGM 
is evident and therefore a complete micro-mechanical  model should take into account the main 
microstructural details. 
 

 
 

Figure 5: damage parameter for a graded microstructure and a homogeneous material 
 

 
 

Figure 6: effects of stochasticity on the damage accumulation 
 
Then, a new set of computations was performed on the same microstructures, but varying the Weibull 
moduli (m=25 for both phases, σ0=0.34GPa  and 0.06GPa for alumina and glass respectively). This 
choice of parameters corresponds to a realistic one for those materials, since the Weibull parameter σ0 is a 
characteristic strength, related the mean fracture stress of the materials [9]. The fracture behavior in this 
case is different from the first set of experiments, resulting in less failures in the alumina phase where the 



characteristic strength is higher compared to the previous case, i.e. the damage parameter remains lower. 
This results underlines how the choice of the Weibull parameters, usually determined experimentally, 
affects the global response. 
 
 
CONCLUSIONS 
 
The focus of the paper was to analyze the effect of randomness of microstructure of FGM on the fracture-
damage behavior. To this aim, a micro-mechanics model able to consider the stochasticity of placement 
of second phase particles is adopted: OOF, a finite element code able to operate directly on 
microstructural images and to create finite element meshes that take into account microstructural features, 
is used in conjunction with a statistical approach for brittle fracture. 
 
The numerical analyses for the stochastically graded microstructure can be compared with those obtained 
for a continuous (homogeneously graded) model  which does not take into account the microstructural 
randomness and discreteness. The results demonstrate the need to consider microstructural details for 
accurately modeling FGM as regards their fracture and damage accumulation behavior. In fact, the 
heterogeneous microstructure can affect the initiation of cracks. 
 
This work is currently in progress. In particular, the study aims to quantitatively assess the effect of the 
characteristic Weibull parameter on damage accumulation. Moreover the model could be extended to 
account for other factors not considered in this case, such as the adhesion (strong or weak) at the interface 
between the two phases. 
 
 
REFERENCES 
 
1. Giannakopoulos A.E. and Suresh S. (1997) Int. J. Solids Struct. 34, 2357.  
2. Jitcharoen J., Padture N.P., Giannakopoulos A.E. and Suresh S. (1998) J. Am. Ceram. Soc. 81, 2301. 
3. Carter W.C., Langer S.A. and Fuller E.R. The OOF manual: version 1.0, 1998. NIST Internal Report, 

NISTIR 6256, http://www.ctcms.nist.gov/oof/  
4. Petterman H.E. (2000) Mater. Sci. Engng. A 276, 277. 
5. Weissenbek E., Petterman H.E. and Suresh S. (1997) Acta Mater. 45, 3401. 
6. Dao M., Gu P., Maewal A. and Asaro R.J. (1997) Acta Mater. 45, 3265. 
7. Cannillo V., Carter W.C., to appear 
8. Weibull W. (1951) J. Appl. Mech., 18, 293. 
9. Khalili A., Kromp K. J.Mater Sci. Lett. (1991) 26, 6741. 
 
 

http://www.ctcms.nist.gov/oof/

