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ABSTRACT 
 
The effects of interfacial debonding and sliding on the fracture characterisation of unidirectional fibre-
reinforced composites are studied numerically under small-scale bridging conditions in plane strain. 
The cohesive zone, more commonly called the fracture process zone (FPZ), is characterised by matrix 
separation and individual fibre pullout. A bi-linear stress-displacement fibre-bridging law is 
incorporated into the computational model to account for interfacial debonding and sliding and fibre 
breakage, instead of the line-spring model in which the fibres remain intact. The matrix fracture 
process is described by a linear stress-displacement cohesive law. Anisotropic elastic constitutive 
relations are used for the effective properties of the brittle-matrix composite outside the FPZ. A remote 
boundary condition is also imposed in terms of the elastic solutions for a mode I crack. Crack advance 
and fibre breakage are direct consequences of the constitutive modelling without any ad hoc crack 
growth criterion. Numerical implementation of the finite element method with the embedded cohesive 
zone containing fibre bridging and matrix fracture is elucidated. Fracture resistance (R)-curve is 
obtained for a range of conditions to highlight the debonding and frictional behaviours at the fibre-
matrix interface. It is shown that the fracture toughness can be enhanced by optimisation of the fibre-
matrix interfacial properties. Numerical results also show that fibre breakage plays an important role on 
the reduction of the slope of the R-curve.  
 
KEYWORDS 
 
Cohesive zone, Fibre-bridging, Matrix cracking, Interface behaviour, (R)-curve, Finite element method, 
Fibre pullout, Fibre breakage 
 
INTRODUCTION 
 
In fibre-reinforced composites, the interaction of a fibre with the matrix is of great interest for failure 
assessment. Interfacial debonding and frictional sliding associated with the fibre pullout process are 
regarded as two important mechanisms to increase the toughness of unidirectional fibre-reinforced 
composites. In general, a cell model for a single fibre pullout test is used to evaluate the relationship 
between pullout force and pullout displacement. The fibre pullout force-displacement curves obtained 
provide a good approximation of the crack-face bridging law in the wake region [1-3].  

 
Various approximation methods with regard to the bridged-crack have been developed. Aveston, et al 



[1] estimated the applied stress at which matrix cracking takes place with the fibres left completely 
intact. In Marshall and Cox’s work [2], a shear lag analysis, i.e., a constant shear frictional stress, is 
used to deal with interfacial sliding resistance. This is valid for a composite system with a weak or un-
bonded sliding interface. Also, different forms of bridging laws have been presented in the past decade 
to account for the effects of fibre debonding and fibre sliding [4,5]. Further, the effect of interface 
roughness on the bridging law was analysed by Liu, Zhou and Mai [6]. Even so, the effect of fibre-
matrix interface debonding and sliding on the fracture process has not yet been thoroughly investigated. 
 
In low-density fibre composites a crack is bridged by a few fibres, and the smeared-out model cannot 
be usefully applied without loss of accuracy. Hence, there is a need to understand the bridging effect by 
discrete fibres over a finite length. Meda and Steif [4] discussed several reasons for poor agreement 
between experimental observations and theoretical predictions based on the continuous distribution of 
tractions along the crack-faces. It is desirable to develop an independent model where discrete fibres 
are analysed explicitly, rather than implicitly as in earlier crack-bridging models. Fibre breaks play an 
important role in the softening behaviour of fibre-reinforced composites. However, most solutions 
available for crack resistance (R)-curves are obtained from approximate shear lag analysis and 
smeared-out representation of the bridged area and do not include fibre breakage. Also, fracture of 
composites involves more than one physical process. Thus, rupture in unidirectional fibre-reinforced 
composites is associated with brittle matrix fracture, fibre pullout and fibre fracture [7]. In principle, 
distinct failure mechanisms cannot be incorporated in a unified cohesive zone model, although attempts 
have been made to do so. Hence, matrix cracking and fibre bridging should be modelled separately by a 
two-part description. That is, the coexistence of a fibre bridging zone and a matrix cohesive zone, 
whose stresses depend on the crack-face opening displacement.  
 
The aim of this work is to study the toughening mechanisms of aligned fibre composites by finite 
element analysis. Two failure mechanisms, fibre-bridging and matrix cracking, are considered separate 
entities, rather than by a single smeared-out bridging law. A bi-linear constitutive relation is employed 
to describe the fibre-matrix debonding and frictional sliding process. A softening cohesive law is used 
for matrix separation to avoid the stress singularity in conventional bridged-crack models. Numerical 
results are calculated for a carbon fibre-epoxy unidirectional composite with a low fibre density. The 
effects of the interface properties and fibre breakage on the fracture toughness of the composite are 
presented and discussed in detail.  
 
THEORETICAL ANALYSIS 
 
Bridging Law during Fibre Pullout 
Consider an infinite uniformly aligned unidirectional fibre composite containing a semi-infinite crack. 
The crack-face separation and crack growth are restrained by the bridging fibres. Descriptions of the 
fibre bridging stress and crack-face displacement relationship can be obtained by a theoretical analysis 
of a fibre pullout process [8] as typified by the stress-displacement curve in Fig.1, in which σ is applied 
stress at fibre end and δ is pullout displacement. σ1f and f1δ  are the initial debonding stress and 
displacement, respectively. Two parameters, σ1f and the slope κ  (see Fig.1) are used as indicative 
measures of the interfacial bond strength and friction coefficient at the partially debonded interface, 
respectively. They define the bilinear law of the stress-displacement relation prior to the full fibre 
pullout from the matrix (which is not shown). Computer simulation [9] study shows that a strong bond 
gives a high initial debonding stress and a high interfacial friction. However, a very strong bond will 
increase the full debonding stress but decrease the pullout-displacement due to fiber breaks. 
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Fig. 1. Schematic representation of fibre-bridging stress with pullout displacement. Four cases are 

studied in this work are shown here and case 4 is for a very strong bond. 
 
Cohesive Law for Matrix Cracking 
The constitutive relationship of the matrix cohesive zone is described by the traction σ  and the 

displacement . It is recognised that the specific work of separation, , reaches a 

critical value when crack growth commences. In the numerical results of Xu, Bower and Oritz [10], it 
was found that fibre debonding occurred as the matrix crack reached a fibre. Hence, we assume that the 
maximum separation  across the matrix cohesive zone must equal the fibre pullout displacement 
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corresponding to σ1f as shown in Fig. 1. The shape of the cohesive law is assumed to be a linear 
function of the separation displacement and is given by: )/1( 11 δδσσ −=  so that Γ0=σ1δ1.  
 
Finite Element Method 
Finite element simulations are based on the updated co-ordinate Lagrangian formulation for a dynamic 
case. For quasi-static cases studied here, the loading rate is assumed to be very small to eliminate the 
kinetic effect. All physical quantities are functions of a set of moving co-ordinates xi  at time t. Fig. 2 
shows the schematic diagram of this small-scale bridging problem of a semi-infinite crack in a uniform 
unidirectional fibre composite. Due to symmetry only a half cracked specimen needs to be considered. 
The fracture plane is replaced by the cohesive zone with fibre-bridging and matrix separation. The 
stresses are related to δ  by the assumed cohesive laws.  
 
Numerical method is implemented by displacement-based finite element method and uniformly 
distributed fine meshes are placed along the fracture plane to simulate crack growth. The size of these 
elements is assumed to be the fibre spacing. A linear interpolation procedure is carried out to obtain 
values of δ  at four Gaussian integration points. Then the stress can be obtained from the cohesive law. 
A fourth order Gaussian integration scheme is used to obtain contribution to the fracture work from the 
matrix process zone. The fibre bridging force is a force at each node due to the small fibre radius. Its 
magnitude is determined by the crack-face displacement. The results are obtained for a semicircular 
region with initial radius  = 200 mm. It is chosen such that 0R ∆40000 =R  in which  is the size of 
the smallest mesh element ahead of the crack-tip. 

∆
∆== 1.0110δδ cf  is selected to determine the 



maximum separation of the fibre and ∆= 01.01δ  is the maximum matrix separation. A fine mesh with 
length  is placed ahead of the crack tip to simulate crack growth.  ∆48L0 =
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 Fig. 2. Schematic diagram of the small-scale bridging problems of a semi-infinite crack in uni-

directionally aligned fibre reinforced composites. 
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Small-scale bridging conditions involve imposing initial and boundary conditions appropriate to the 
linear transversely isotropic and orthotropic elastic crack-tip fields, respectively. The traction-
separation law used to model the fracture process is specified everywhere on the boundary >0 and 

 of the region analysed, while zero traction exists on the boundary <0 and . On the 
outer semi-circular boundary, the displacements, u

1x
002 =x 1x 2 =x

1& and 2u&  are given by the external stress fields, 
specified by the incremental rate of the mode I stress intensity factor IK& . Details of the equations, 
mesh and FEA procedure are given in Ref. [11].  

 
NUMERICAL RESULTS 
 
Numerical calculations are carried out for carbon fibres in an epoxy matrix with material 
parameters =230 GPa,  GPa, 3=mE mν ,2 =0.4 and V =0.1. Thus, we can obtain the 

effective elastic modulus and Poisson ratio as 
f

7.25=E GPa and ν =0.38, as well as the mass 
density 2000 kg/m3. The computation is stopped when sufficiently long crack growth occurs. We 
assume the fibre strength to be uniform and the fibres break at the crack plane. (However, non-
uniform fibre strength distribution can be included in our computation model as in [12,13].) Hence, 
there is no fibre pullout due to frictional sliding from the matrix. For numerical calculations, we 
give the fibre a small extra pullout displacement, f1δ /10, so that the pullout force can be reduced to 
zero. This also stabilized the computations. For simplicity, the debonding strength f1σ  is 

normalised by the matrix cohesive strength, i.e., η= 11 / σσ f . In the calculations, we assumed fibre 
debonding begins when the matrix crack-tip reaches this fibre. The non-dimensional cohesive 
strength of the matrix E/1σ  is assumed to be . Thus, the cohesive energy G  for the 3105 −× mc



matrix is 66.25 J/m2. Based on the relationship: , we obtain the matrix 

critical stress intensity factor =

)1/( 22
mcmmcm GEK ν−=

cmK mMPa486.0 .  
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Fig. 3. Fracture resistance curves for several 
values of parameters  and κ. 
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Fig. 4. Fiber stress (σ/ E ) along the crack-line 
(x1/R0) for several values of parameters η  and κ   

 
Figure 3 shows typical R-curves for different debonding energy and interfacial frictional resistance. 
An increase in  means an improvement in debond toughness and an increase in κ,  normalised by f1σ

0/ RE ,  means an increase in frictional sliding resistance. It is clear that crack initiation is delayed by 
increasing . Fracture toughness is enhanced as crack advances at a relatively large slope because of 
the dominant effect of fibre-bridging. An increase in the frictional sliding resistance also increases 
the fracture toughness. Due to the complexity of the pullout process, the effects of fibre sliding at the 
debonded interface cannot be separated in the bridging law. However, it is reasonable that an increase 
in fracture resistance takes place at large κ. There is a transition of the R-curve from an initial rising 
part to a steady-state in which the length of the bridging zone does not change with subsequent crack 
extension. This transition occurs when the fibres at the receding edge of the bridging zone begins to 
break. The very slight rise of crack-resistance in the steady-state region is caused by kinetic effect 
since extremely large CPU time is required for lower loading rate than that used.  

η

 
Increasing the interface strength will accelerate fibre breakage due to the stress elevation in the fibres 
ahead of the crack-tip. The nett effect is a reduction in the fibre pull-out displacement. If we take case 
4 in Fig. 1 with η=10 and 12δδ =cf  for a very strong interface, the steady-state toughness is much 
lower but slope much larger at the initial stage than that with the same η , Fig. 3. It is unwise hence to 
increase the interface strength, as the admissible inelastic deformation accompanying fibre sliding is 
severely curtailed. There are optimal interface properties to obtain maximum fracture toughness. 
 
As fibre stress ahead of the crack-tip is not affected by the amount of crack advance at the stage of 
steady-state crack growth, the distribution of fibre stress at incipient fibre breaks can be taken as 
typical for a set of given material parameters. Fig. 4 shows distributions of normalized fibre stresses 
for three cases studied. With increasing interface strength and frictional resistance, the maximum 
fibre stress also increases. This corresponds to 0.06, 0.084 and 0.095 for the three cases. Although a 
large κ can increase the maximum stress in the bridged zone, it decreases rapidly to the same level as 
low κ’s at the crack-tip, as frictional sliding does not come into effect ahead of the crack-tip. 
 



CONCLUSIONS 
 
A finite element analysis was carried out for the failure behaviours of aligned fibre composites in 
terms of an embedded cohesive zone with matrix cracking and fibre-bridging. These two failure 
mechanisms, matrix cracking and fibre debond, pullout and fracture, are considered as separate 
entities, rather than under a single smeared-out bridging law. In describing the properties of fibre 
debonding and frictional sliding, a bi-linear constitutive law is used and in which, two parameters, η  
and , have been utilised to characterise these two effects on the fracture resistance.  κ

 
Numerical results show that the composite toughness can be increased by improving the interfacial 
properties. However, if the interface is too strong, low toughness can be caused by fibre breakage. 
Hence, high toughness can only be achieved by optimal design of the fibre-matrix interface.  
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