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ABSTRACT 
   In this study, fatigue crack propagation tests were carried out to obtain the fatigue fracture surfaces on 
compact tension type specimens of A5052 aluminum alloy and S25C carbon steel, and the fatigue fracture 
surfaces were observed by means of a scanning laser microscope system.  Based on the digital data thus 
obtained, imaginary fracture surface was reconstructed in a 3-dimensional space by a personal computer.  
Fractal analysis proposed by B. B. Mandelbrot was applied to such 3-dimensional surfaces and a hyperbola 
model was accepted to represent the Richardson effect.  Due to the Richardson effect thus analysed, the 
fractal feature was confirmed in the fracture surface irregularity.  It was finally found that the geometrical 
irregularity of the surface was well evaluated by combining the fractal dimension and additional indices 
termed as “index of fracture surface nature”, and that the fractal dimension and the additional indices were 
successfully connected to the stress intensity factor range of ΔK. 
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1. INTRODUCTION 
   In order to analyse the irregularity of shapes and time-dependent phenomena, various methods such as 
Fourier analysis and some conventional procedures as stochastic process have been developed and used by 
many researchers.  A concept of fractal proposed by B. B. Mandelbrot [1] is useful to quantify the above 
irregularity and this has been successfully applied to various fields in both science and technology [2-5]. 
   On the other hand, several kinds of high resolution microscopes such as SLM (Scanning Laser 
Microscope), STM (Scanning Tunnel Microscope) and AFM (Atomic Force Microscope) have been used in 
recent years to observe the nature of the fracture surface in a 3-dimensional space.  However, definite 
procedures to quantify the irregularity of the fracture surfaces have not been established yet. 
   As reported in the earlier papers [6, 7], we proposed a new analytical method to quantify the surface 
irregularity applying the concept of fractal, and the surface irregularity of the tensile fracture surfaces and 
the mechanically finished surfaces was successfully evaluated by using this method.  In the present study, 
this method is modified and expanded to analyse the surface irregularity of the fatigue fracture surfaces.  
Moreover, particular attention is paid here to investigate the relationship between the surface irregularity 



and the fracture mechanics parameter of ΔK. 
 
 
2. SPECIMENS AND FATIGUE CRACK PROPAGATION TESTS 
2.1 Specimens and Fatigue Crack Propagation Behavior 
   Materials used in this study are A5052 aluminum alloy and S25C carbon steel in JIS material codes.  
Mechanical properties of these materials obtained by tensile tests are listed in Table 1.  Fatigue crack 
propagation tests were performed by a hydraulic servo fatigue testing machine to obtain the fatigue fracture 
surfaces on compact tension type specimen [8, 9] standardized in ASTM.  The frequency was fixed to 
50Hz, and two different stress ratios of R＝0.1 and 0.5 were selected.  Fatigue fracture surfaces were 
observed by means of a SLM system explained in other papers [10, 11], whereas the fatigue crack 
propagation was observed by an optical microscope with the resolution of ×100. 
   Based on the crack propagation behavior thus observed, relationships between the stress intensity factor 
range ΔK and the crack growth rate da/dN are plotted as shown in Figure 1.  It should be noted that only 
one specimen was assigned to each series of the fatigue crack propagation test.  In this figure, each solid 
line is determined as to provide the least squares for the respective data points.  It is confirmed that the 
fatigue crack propagation behavior is well represented by the following expression [12]; 
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Table 1: Mechanical properties of materials 

Figure 1: Relationships between stress intensity factor range ΔK and crack growth rate da/dN 

* : not satisfied Eqn.(4).

A5052 － 225 268 19.8 43.4
S25C 333 － 506 35.5 59.8
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and )(αf  is the modification coefficient depending on the specimen configuration of α＝a／W.  
Furthermore ΔP and a mean the load range and the crack length, respectively.  B and W are the specimen 
thickness and width, and they are B＝16mm and W＝32mm for the present specimens. 
   When the linear fracture mechanics is applied to the fatigue crack propagation behavior, the following 
condition of small scale yielding [13] must be always satisfied; 
 

2
max4












σπ
≥

y

K
aW－  ,                                   (4) 

 
where σy is the yield stress of the materials, and Kmax is the maximum stress intensity factor calculated by 
substituting the maximum load Pmax into ΔP in Eqn. (2).   In this study, we have σ0.2＝225MPa for 
A5052 specimen and σy＝333MPa for S25C specimen as shown in Table 1.  Based on calculation at 
every stage of the crack propagation, almost all experimental points in Figure 1 satisfy the above condition 
except for a few points attached the mark of “*”, which appear in the high crack growth rate region. 
 
2.2 Observation of Fatigue Fracture Surfaces 
   Fatigue fracture surfaces were observed by means of a SLM (Scanning Laser Microscope) system.  
Comparing with SEM (Scanning Electronic Microscope) observations, the present SLM has some 
advantages such that 3-dimensional numerical data are directly obtained on real-time and these data are 
fundamentally convenient for the fractal analysis performed in this study. 
   As examples of SLM observations, micrographs of the fatigue fracture surface of A5052 aluminum 
alloy taken at the resolution of ×1250 are shown in Figure 2 (a) and (b).  For the sake of comparison, 
SEM micrograph of the same area is also shown in Figure 2 (c), and the striation pattern is again observed 
with the further high resolution as shown in Figure 2 (d).  In these SLM micrographs, a bright part 
indicates a high position on the real surface, whereas a dark part indicates a low position.  The real height 
(total depth) in Figure 2 (a) is 64μm and that in Figure 2 (b) is 122μm , respectively.  For the SLM 
observation with the resolution of ×1250, a square area of 161.5μm×161.5μm is defined as a sample 
space to analyse the fracture surface irregularity.  This area is replaced by a 200dot×200dot square on 
CRT screen.  Based on the digital data thus obtained, the imaginary fracture surface was reconstructed in a 
3-dimensional space as illustrated in Figure 3.  Fractal analysis was performed on the geometrical 

 (a) ΔK＝7.35 (MPa m )    (b) ΔK＝29.04 (MPa m )
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Figure 2: (a), (b)SLM and (c), (d)SEM micrographs of fatigue fracture surface 
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irregularity of such a imaginary fracture surface. 
 
 
3. ANALYTICAL PROCEDURE 
   As reported in the earlier papers [6, 7], geometrical irregularity of the tensile fracture surfaces and the 
mechanically finished surfaces were well evaluated by using the method of “Fractal”.  If a surface has the 
fractal nature, we have the following equation between the total area of imaginary fracture surface S and the 
measuring unit length ε; 
 

ln S＝ln F＋(2－D)lnε ,                            (5) 
 
where D is the fractal dimension. Thus this dimension can be calculated from the slope of the regression line 
for lnε－ln S relationship as shown in Figure 4.  The value of D is always in D≧2.0, since the regression 
line must have a negative slope.  The surface area S changes depending on the unit length of ε, and the 
effect of ε on the surface area S is so called “Richardson effect [14]”. 
   Usually, the linear Richardson effect is confirmed within a limited range of ε, so that the effect is no 
longer represented by the linear expression in other area of ε.  Thus the Richardson effect in the entire 
region of ε should be represented by a different type of expression.  Accordingly, the following 
expression in hyperbola type [15] is proposed here; 
 

( ln S－E )( ln S＋A lnε－B )＝C .                       (6) 
 
   Meanings of all the parameters in this expression are schematically indicated in Figure 4.  Fractal 
dimension D can be calculated from the slope of A as D＝2－A.  Other parameters such as B, C and E are 
termed as “index of fracture surface nature” in this paper, since these parameters well reflect the geometrical 
characteristics of the fracture surface. 
 
 
4. ANALYTICAL RESULTS AND DISCUSSIONS 
4.1 Analytical Results and Self-similarity of Fatigue Fracture Surface 
   As examples of the Richardson effect, the fracture surface area S measured on A5052 alloy and S25C 
steel specimens was plotted as functions of the unit length ε in Figure 5 (a) and (b).  For the sake of 
comparison, the analytical results of the tensile fracture surface [6] were also plotted by using small solid 
symbols in Figure 5 (b).  Fractal dimension and each index of fracture surface nature analysed for the 
respective SLM micrographs are listed in Table 2.  Fractal dimensions are calculated from the slope of 
each regression line for the individual magnification.  Each horizontal dashed line indicates the level of 
perfect flat surface which has D＝2.0 for every magnification of the SLM observation.  In these figures, it 
is found that lnε－ln S relationships for fatigue fracture surfaces of the objective materials are well 

Figure 3: Reconstruction of imaginary fracture 
          surface by multifacet surface Figure 4: Schematics of lnε－ln S relationship
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represented by the expression in hyperbola type in Eqn. (6). 
   If the analytical object has a fractal nature, then the irregularity is well evaluated by the fractal 
dimension and must have characteristics of the self-similarity [1].  In Table 2, the values of D are almost 
constant for the fracture surfaces of S25C carbon steel in wide resolution range.  However, in the case of 
A5052 aluminum alloy, the fractal dimension tends to decrease in the higher magnification of ×2500.  
Thus the self-similarity cannot be confirmed in the entire resolution range depending on the material.  
Similar trend was found on the fracture surfaces failed under R＝0.5. 
 
4.2 Connection of Surface Irregularity and Fracture Mechanics 
   Relationships between the stress intensity factor range ΔK and the fractal dimension D were plotted in 
Figure 6.  Each number attached to the bracket is the code number to be linked the corresponding number 
in Figure 1.  In Figure 6 (a), it is found that the fractal dimension tends to increase with an increase of the 
ΔK in the lower resolution, although the value keeps constant in the higher resolution.  This means that 
the macroscopic irregularity on the fracture surface increases with an increase of ΔK, while the 
microscopic irregularity has no effect on ΔK.  On the other hand, in Figure 6 (b), the fractal dimension 
tends to increase as the ΔK is increased in the entire resolution range.  Thus the macroscopic and the 
microscopic irregularities on the fracture surface of S25C increase with an increase of ΔK. 
   Furthermore, in the relationships between the ΔK and index of fracture surface nature (B－E)／A, the 
value of (B－E)／A tends to increase regardless of the resolution range as the ΔK is increased.  
Especially, this trend is distinct in the lower resolution range.  Thus the fractal dimension and each index 
of fracture surface nature were successfully connected to the stress intensity factor range of ΔK. 
 
5. CONCLUSIONS 
(1) Analytical procedure to evaluate the surface irregularity of the fatigue fracture surfaces for A5052 

Pmax＝4.9kN, R＝0.1 
ΔK＝26.33 (MPa m )

Pmax＝4.9kN, R＝0.1 
ΔK＝29.04 (MPa m )

small marks : see Table 2. 

(a) A5052 aluminum alloy                         (b) S25C carbon steel 
Figure 5: lnε－ln S relationships for A5052 aluminum alloy and S25C carbon steel under R＝0.1 

 
Table 2: Numerical list of analytical results (Pmax＝4.9kN) 
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aluminum alloy and S25C carbon steel was developed by applying a concept of fractal and a curve 
fitting technique. 

(2) Fatigue fracture surfaces of the present metallic materials have the fractal nature.  Especially, the 
fracture surfaces of S25C carbon steel under the stress ratios R＝0.1 and 0.5 have the complete 
self-similarity in wide resolution range. 

(3) In order to evaluate the geometrical irregularity of the fracture surface, one should combine the fractal 
dimension and additional indices termed as “index of fracture surface nature”. 

(4) Fractal dimension and each index of fracture surface nature were successfully connected to the stress 
intensity factor range ΔK giving the key parameter in the fracture mechanics approach to the crack 
propagation. 
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Figure 6: Relationships between stress intensity factor range ΔK and fractal dimension D 
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